Skip to main content

Pathophysiological Mechanisms of Huntington’s Disease

  • Chapter
  • First Online:
Book cover Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

Huntington’s disease (HD) is a dominant autosomal monogenic disease whose pathophysiological basis comes from a mutation in the huntingtin (HTT) protein. HTT is one of the proteins whose gene has a polymorphic CAG trinucleotide repeat tract, leading to the formation of polyglutamine tract in the N-terminal region of the protein. The expansion of CAG repeat is the basic characteristic of mutated huntingtin (mHTT). HD is therefore characterized as one of the polyglutamine diseases (PolyQ). The initially apparent main symptoms are motor changes, with choreic movements, progressive loss of motor coordination, cognitive decline, and psychiatric disorders. The pathophysiology of this disease involves a wide range of biological mechanisms, whose alterations culminate in gliosis, with loss of astrocytes and oligodendrocytes, and in neuronal death and atrophy of brain tissues, with the most affected regions starting with the striatum, which integrates circuit of the basal ganglia and the cerebral cortex. Medium-sized spiny projecting neurons which release inhibitory γ-aminobutyric acid (GABA) neurotransmitter are the most affected, but many other neurons and neurotransmitters are involved in the circuit dysfunction. Among biological alterations inherent or consequent to the dysfunctions in the neurotransmission system are cellular inclusions of protein aggregates, changes in cellular signaling pathways, energy metabolism, oxidative balance, and inflammatory mechanisms. This chapter discourse some well-defined basic pathophysiological features and some mechanisms that are the most recent study objects in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.

    Article  CAS  PubMed  Google Scholar 

  2. Morrison PJ. Accurate prevalence and uptake of testing for Huntington’s disease. Lancet Neurol. 2010;9(12):1147.

    Article  PubMed  Google Scholar 

  3. Vonsattel JP. Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115(1):55–69.

    Article  PubMed  Google Scholar 

  4. Reedeker W, van der Mast RC, Giltay EJ, Kooistra TA, Roos RA, van Duijn E. Psychiatric disorders in Huntington’s disease: a 2-year follow-up study. Psychosomatics. 2012;53(3):220–9.

    Article  CAS  PubMed  Google Scholar 

  5. Réus GZ, Titus SE, Abelaira HM, Freitas SM, Tuon T, Quevedo J, Budni J. Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci. 2016;158:121–9.

    Article  PubMed  Google Scholar 

  6. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

    Article  CAS  PubMed  Google Scholar 

  7. Huntington G. On chorea. J Neuropsychiatry Clin Neurosci. 2003;15(1):109–12.

    Article  PubMed  Google Scholar 

  8. Spokes EGS. The neurochemistry of Huntington’s chorea. TINS. 1981;4:115–8.

    CAS  Google Scholar 

  9. The Huntington Disease’s Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  10. Saudou F, Humbert S. The biology of Huntingtin. Neuron. 2016;89(5):910–26.

    Article  CAS  PubMed  Google Scholar 

  11. Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JP, Faull RL. The neuropathology of Huntington’s disease. Curr Top Behav Neurosci. 2015;22:33–80.

    Article  CAS  PubMed  Google Scholar 

  12. Rüb U, Vonsattel JP, Heinsen H, Korf HW. The neuropathology of Huntington’s disease: classical findings, recent developments and correlation to functional neuroanatomy. Adv Anat Embryol Cell Biol. 2015;217:1–146.

    Article  PubMed  Google Scholar 

  13. Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6(12):919–30.

    Article  CAS  PubMed  Google Scholar 

  14. Tourette C, Li B, Bell R, O’Hare S, Kaltenbach LS, Mooney SD, Hughes RE. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem. 2014;289(10):6709–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol. 1997;41(5):646–53.

    Article  CAS  PubMed  Google Scholar 

  16. Leszek J, Barreto GE, Gąsiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar A, Ratan RR. Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J Huntingtons Dis. 2016;5(3):217–37.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330.

    Article  CAS  PubMed  Google Scholar 

  19. Vonsattel J-PG, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57:369–84.

    Article  CAS  PubMed  Google Scholar 

  20. Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci. 1999;19(13):5409–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res. 2002;43(2):111–7.

    Article  PubMed  Google Scholar 

  22. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RL. Striosomes and mood dysfunction in Huntington’s disease. Brain. 2007;130(Pt 1):206–21.

    Article  PubMed  Google Scholar 

  23. Thu DC, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ, Luthi-Carter R, Waldvogel HJ, Faull RL. Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain. 2010;133(Pt 4):1094–110.

    Article  PubMed  Google Scholar 

  24. Pillai JA, Hansen LA, Masliah E, Goldstein JL, Edland SD, Corey-Bloom J. Clinical severity of Huntington’s disease does not always correlate with neuropathologic stage. Mov Disord. 2012;27(9):1099–103.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Reading SA, Yassa MA, Bakker A, Dziorny AC, Gourley LM, Yallapragada V, Rosenblatt A, Margolis RL, Aylward EH, Brandt J, Mori S, van Zijl P, Bassett SS, Ross CA. Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res. 2005;140(1):55–62.

    Article  PubMed  Google Scholar 

  26. Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology. 2005;65(5):745–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, PREDICT-HD Study of the Huntington Study Group (HSG), Landwehrmeyer GB, REGISTRY Study of the European Huntington’s Disease Network, Myers RH, HD-MAPS Study Group, MacDonald ME, Gusella JF, COHORT Study of the HSG. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell WO Jr, Miller G, Tagle DA. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet. 1998;20(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  29. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, Almqvist EW, Turner D, Bachoud-Lévi AC, Simpson SA, Delatycki M, Maglione V, Hayden MR, Donato SD. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain. 2003;126(Pt 4):946–55.

    Article  PubMed  Google Scholar 

  30. Ciarmiello A, Giovacchini G, Giovannini E, Lazzeri P, Borsò E, Mannironi A, Mansi L. Molecular imaging of Huntington’s disease. J Cell Physiol. 2017;232(8):1988–93. https://doi.org/10.1002/jcp.25666.

    Article  CAS  PubMed  Google Scholar 

  31. Caron NS, Desmond CR, Xia J, Truant R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci U S A. 2013;110(36):14610–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90(3):537–48.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington’s disease. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1386):1035–45.

    Article  CAS  Google Scholar 

  34. Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci. 2010;33(11):513–23.

    Article  CAS  PubMed  Google Scholar 

  35. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Dvorzhak A, Semtner M, Faber DS, Grantyn R. Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin. J Physiol. 2013;591(4):1145–66.

    Article  CAS  PubMed  Google Scholar 

  37. Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front Neural Circuits. 2013;7:188.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Cha JH. Transcriptional signatures in Huntington’s disease. Prog Neurobiol. 2007;83(4):228–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wilson H, De Micco R, Niccolini F, Politis M. Molecular imaging markers to track Huntington’s disease pathology. Front Neurol. 2017;8:11.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sun Y, Savanenin A, Reddy PH, Liu YF. Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem. 2001;276(27):24713–8.

    Article  CAS  PubMed  Google Scholar 

  41. Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther. 1999;10(18):2987–97.

    Article  CAS  PubMed  Google Scholar 

  42. Pérez-Navarro E, Gavaldà N, Gratacòs E, Alberch J. Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J Neurochem. 2005;92(3):678–91.

    Article  PubMed  Google Scholar 

  43. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001;293(5529):493–8.

    Article  CAS  PubMed  Google Scholar 

  44. Fusco FR, Zuccato C, Tartari M, Martorana A, De March Z, Giampà C, Cattaneo E, Bernardi G. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci. 2003;18(5):1093–102.

    Article  PubMed  Google Scholar 

  45. Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990;9(8):2459–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389(6653):856–60.

    Article  CAS  PubMed  Google Scholar 

  47. Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci. 2004;24(17):4250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizuno K, Carnahan J, Nawa H. Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol. 1994;165(1):243–56.

    Article  CAS  PubMed  Google Scholar 

  49. Ventimiglia R, Mather PE, Jones BE, Lindsay RM. The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci. 1995;7(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  50. Ferrer I, Goutan E, Marín C, Rey MJ, Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 2000;866(1–2):257–61.

    Article  CAS  PubMed  Google Scholar 

  51. Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ. 2004;11(4):424–38.

    Article  CAS  PubMed  Google Scholar 

  52. Giampà C, Montagna E, Dato C, Melone MA, Bernardi G, Fusco FR. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One. 2013;8(5):e64037.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KK, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease. J Clin Invest. 2017;127(4):1438–50.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Cepeda C, Murphy KP, Parent M, Levine MS. The role of dopamine in Huntington’s disease. Prog Brain Res. 2014;211:235–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci. 2013;7:114.

    PubMed  PubMed Central  Google Scholar 

  56. Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol. 2016;82(5):1245–66.

    Article  CAS  PubMed  Google Scholar 

  57. Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol. 2016;82(5):1280–90.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal. 2014;7(349):ra103.

    Article  PubMed  Google Scholar 

  59. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–95.

    Article  CAS  PubMed  Google Scholar 

  60. Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM, Davidson BL. Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes. Neuron. 2015;85(2):303–15.

    Article  CAS  PubMed  Google Scholar 

  61. Mao Y, Chen X, Xu M, Fujita K, Motoki K, Sasabe T, Homma H, Murata M, Tagawa K, Tamura T, Kaye J, Finkbeiner S, Blandino G, Sudol M, Okazawa H. Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington’s disease pathology. Hum Mol Genet. 2016;25(21):4749–70.

    CAS  PubMed  Google Scholar 

  62. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, Tagawa K, Akashi T, Eishi Y, Okazawa H. A novel form of necrosis, TRIAD, occurs in human Huntington’s disease. Acta Neuropathol Commun. 2017;5(1):19.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011;2011:572634.

    PubMed  PubMed Central  Google Scholar 

  64. Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. 2013;18(5):595–606.

    Article  CAS  PubMed  Google Scholar 

  65. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:676–92.

    Article  CAS  PubMed  Google Scholar 

  66. Che Y, Zhou Z, Shu Y, Zhai C, Zhu Y, Gong S, Cui Y, Wang JF. Chronic unpredictable stress impairs endogenous antioxidant defense in rat brain. Neurosci Lett. 2015;584:208–13.

    Article  CAS  PubMed  Google Scholar 

  67. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  68. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322(1–2):254–62.

    Article  CAS  PubMed  Google Scholar 

  69. Hands S, Sajjad MU, Newton MJ, Wyttenbach A. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J Biol Chem. 2011;286(52):44512–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MA, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: beneficial effects of anti-oxidant therapeutics. Neurochem Int. 2016;101:132–43.

    Article  CAS  PubMed  Google Scholar 

  71. Muller M, Leavitt BR. Iron dysregulation in Huntington’s disease. J Neurochem. 2014;130(3):328–50.

    Article  CAS  PubMed  Google Scholar 

  72. Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington’s disease. Brain Pathol. 1999;9(1):147–63.

    Article  CAS  PubMed  Google Scholar 

  73. Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol. 2012;69(7):887–93.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, Volitakis I, Cherny RA, Bush AI, Hersch S. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One. 2007;2(3):e334.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A. Quinolinic Acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 2012;5:1–8.

    PubMed  PubMed Central  Google Scholar 

  76. Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F. Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages. J Leukoc Biol. 2000;68(2):260–6.

    CAS  PubMed  Google Scholar 

  77. Colle D, Hartwig JM, Soares FA, Farina M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res Bull. 2012;87(4–5):397–405.

    Article  CAS  PubMed  Google Scholar 

  78. Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington’s disease. Neurosci Lett. 1998;241:3–56.

    Article  Google Scholar 

  79. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60:161–72.

    Article  CAS  PubMed  Google Scholar 

  80. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43.

    Article  CAS  PubMed  Google Scholar 

  81. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Deglon N, Ferrante RJ, Bonvento G. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19:3053–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Jansen AH, van Hal M, Op den Kelder IC, Meier RT, de Ruiter AA, Schut MH, Smith DL, Grit C, Brouwer N, Kamphuis W, Boddeke HW, den Dunnen WF, van Roon WM, Bates GP, Hol EM, Reits EA. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia. 2017;65(1):50–61.

    Article  PubMed  Google Scholar 

  83. Crotti A, Glass CK. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol. 2015;36(6):364–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Träger U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, McKinnon C, Sirinathsinghji E, Kahlon S, Pfister EL, Moser R, Hummerich H, Antoniou M, Bates GP, Luthi-Carter R, Lowdell MW, Björkqvist M, Ostroff GR, Aronin N, Tabrizi SJ. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain. 2014;137(Pt 3):819–33.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Möller T, Tabrizi SJ. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205(8):1869–77.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Valekova I, Jarkovska K, Kotrcova E, Bucci J, Ellederova Z, Juhas S, Motlik J, Gadher SJ, Kovarova H. Revelation of the IFNα, IL-10, IL-8 and IL-1β as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington’s disease model. J Neuroimmunol. 2016;293:71–81.

    Article  CAS  PubMed  Google Scholar 

  87. Chang KH, Wu YR, Chen YC, Chen CM. Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun. 2015;44:121–7.

    Article  CAS  PubMed  Google Scholar 

  88. Weiss A, Träger U, Wild EJ, Grueninger S, Farmer R, Landles C, Scahill RI, Lahiri N, Haider S, Macdonald D, Frost C, Bates GP, Bilbe G, Kuhn R, Andre R, Tabrizi SJ. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest. 2012;122(10):3731–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ignácio, Z.M., Quevedo, J., Réus, G.Z. (2019). Pathophysiological Mechanisms of Huntington’s Disease. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics