Skip to main content

Automated CAD Identification System Using Time–Frequency Representation Based on Eigenvalue Decomposition of ECG Signals

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 748))

Abstract

Coronary artery disease (CAD) is a condition where coronary arteries become narrow due to the deposition of plaque inside them. It may result in heart failure and heart attack which are life-threatening conditions. Therefore, human life can be saved by detection of CAD at an early stage. Electrocardiogram (ECG) signals can be used to detect CAD. Manual inspection of ECG recordings is not reliable as the accuracy of the outcome depends on the skills and experience of clinicians. Therefore, an automated detection method for CAD based on a time–frequency representation (TFR) known as improved eigenvalue decomposition of Hankel matrix and Hilbert transform (IEVDHM-HT) using ECG beats is proposed in the present work. Time–frequency flux (TFF), coefficient of variation (COV), and energy concentration measure (ECM) are computed from the TFR matrix and fed to the random forest classifier. The proposed method has yielded 93.77% classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acharya, U.R., Faust, O., Sree, V., Swapna, G., Martis, R.J., Kadri, N.A., Suri, J.S.: Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Prog. Biomed. 113, 55–68 (2014)

    Article  Google Scholar 

  2. Acharya, U.R., Sudarshan, V.K., Koh, J.E.W., Martis, R.J., Hong, T.J., Lih, O.S., Adam, M., Hagiwara, Y., Mukiah, M.R.K., Poo, C.K., Chua, C.K., San, T.R.: Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomed. Signal Process. Control 31, 31–43 (2017)

    Article  Google Scholar 

  3. Antanavičius, K., Bastys, A., Blužas, J., Gargasas, L., Kaminskienė, S., Urbonavičienė, G., Vainoras, A.: Nonlinear dynamics analysis of electrocardiograms for detection of coronary artery disease. Comput. Methods Prog. Biomed. 92, 198–204 (2008)

    Article  Google Scholar 

  4. Arafat, S., Dohrmann, M., Skubic, M.: Classification of coronary artery disease stress ECGs using uncertainty modeling. In: ICSC Congress on Computational Intelligence Methods and Applications, pp. 1–4 (2005)

    Google Scholar 

  5. Bhattacharyya, A., Pachori, R.B.: A multivariate approach for patient specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64, 2003–2015 (2017)

    Article  Google Scholar 

  6. Bigger, J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Schneider, W.J., Stein, P.K.: RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation 91, 1936–1943 (1995)

    Article  Google Scholar 

  7. Boashash, B., Azemi, G., O’Toole, J.M.: Time-frequency processing of nonstationary signals: advanced TFD design to aid diagnosis with highlights from medical applications. IEEE Signal Process. Mag. 30, 108–119 (2013)

    Article  Google Scholar 

  8. Boashash, B., Khan, N.A., Ben-Jabeur, T.: Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review. Digit. Signal Process. 40, 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  10. Giri, D., Acharya, U.R., Martis, R.J., Sree, S.V., Lim VI, T.C., T.A., Suri, J.S.: Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl.-Based Syst. 37, 274–282 (2013)

    Google Scholar 

  11. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)

    Article  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  13. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  14. Huang, N.E.: Hilbert-Huang Transform and Its Applications, vol. 16. World Scientific (2014)

    Google Scholar 

  15. Iyengar, N., Peng, C., Morin, R., Goldberger, A.L., Lipsitz, L.A.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 271, 1078–1084 (1996)

    Article  Google Scholar 

  16. Jain, P., Pachori, R.B.: GCI identification from voiced speech using the eigen value decomposition of Hankel matrix. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 371–376 (2013)

    Google Scholar 

  17. Jain, P., Pachori, R.B.: Event-based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix. IEEE/ACM Trans. Audio Speech Lang. Process. 22, 1467–1482 (2014)

    Article  Google Scholar 

  18. Jain, P., Pachori, R.B.: An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Franklin Inst. 352, 4017–4044 (2015)

    Google Scholar 

  19. Karamanos, K., Nikolopoulos, S., Hizanidis, K., Manis, G., Alexandridi, A., Nikolakeas, S.: Block entropy analysis of heart rate variability signals. Int. J. Bifurc. Chaos 16, 2093–2101 (2006)

    Article  Google Scholar 

  20. Kumar, M., Pachori, R.B., Acharya, U.R.: An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals. Expert Syst. Appl. 63, 165–172 (2016)

    Article  Google Scholar 

  21. Kumar, M., Pachori, R.B., Acharya, U.R.: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. Control 31, 301–308 (2017)

    Article  Google Scholar 

  22. Kumar, M., Pachori, R.B., Acharya, U.: Automated diagnosis of myocardial infarction ECG Signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19, 488 (2017)

    Article  Google Scholar 

  23. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)

    Article  Google Scholar 

  24. McKight, P.E., Najab, J.: Kruskal-Wallis Test. Corsini Encyclopedia of Psychology (2010)

    Google Scholar 

  25. What is coronary heart disease? (2015). http://www.nhlbi.nih.gov/health/health-topics/topics/cad/. Accessed 01 Apr 2016

  26. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)

    Article  Google Scholar 

  27. Patidar, S., Pachori, R.B., Acharya, U.R.: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl.-Based Syst. 82, 1–10 (2015)

    Article  Google Scholar 

  28. Prabhakaran, D., Jeemon, P., Roy, A.: Cardiovascular diseases in India current. Circulation 133, 1605–1620 (2016)

    Article  Google Scholar 

  29. San Roman, J., Vilacosta, I., Castillo, J., Rollan, M., Hernandez, M., Peral, V., Garcimartin, I., de la, Torre, M.d.M., Fernández-Avilés, F.: Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80, 370–376 (1998)

    Google Scholar 

  30. Sharma, R., Pachori, R.B., Upadhyay, A.: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. 28, 2959–2978 (2017)

    Google Scholar 

  31. Sharma, R.R., Pachori, R.B.: Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12(1), 72–82 (2018)

    Google Scholar 

  32. Sharma, R.R., Pachori, R.B.: A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform. In: Fourth International Conference on Signal Processing and Integrated Networks (SPIN 2017), Noida India, pp. 484–488, Feb, 2017

    Google Scholar 

  33. Sood, S., Kumar, M., Pachori, R.B., Acharya, U.R.: Application of empirical mode decomposition-based features for analysis of normal and CAD heart rate signals. J. Mech. Med. Biol. 16, 1640002 (2016)

    Article  Google Scholar 

  34. Wong, N.D.: Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11, 276–289 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Raj Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, R.R., Kumar, M., Pachori, R.B. (2019). Automated CAD Identification System Using Time–Frequency Representation Based on Eigenvalue Decomposition of ECG Signals. In: Tanveer, M., Pachori, R. (eds) Machine Intelligence and Signal Analysis. Advances in Intelligent Systems and Computing, vol 748. Springer, Singapore. https://doi.org/10.1007/978-981-13-0923-6_51

Download citation

Publish with us

Policies and ethics