Skip to main content

Non-linear Analysis of Time Series Generated from the Freeman K-Set Model

  • Conference paper
  • First Online:
Cognitive Informatics and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 768))

Abstract

Brain signals such as EEG and MEG are the only available dynamical measures of functional status of the brain. Over past several years EEG has been found to have nonlinear and chaotic properties. The nonlinear dynamical measures have been linked to brain functioning including the most complex cognitive behavior of man. Our study focuses on showing evidence of nonlinear chaotic behavior of simulated EEG. We have simulated the EEG at the mesoscopic level by using the biologically realistic Freeman K-sets. Here the behavior of the time series at every level of the olfactory system as modeled in the Freeman-KIII set is obtained by solving a set of second-order differential equations using Euler method in MATLAB. The generated low-dimensional- and high-dimensional time series is subjected to a nonlinear analysis using Higuchi fractal dimension, Lyapunov exponent, and Detrended Fluctuation analysis to validate the chaotic behavior. The study indirectly points to suitability of Freeman model for large-scale brain simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eledath, D., Ramachandran, S., Pradhan, N., Asundi, S.: Power spectral scaling and wavelet entropy as measures in understanding neural complexity. Annu. IEEE India Conf. (INDICON) pp. 1–6 (2015)

    Google Scholar 

  2. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987)

    Article  Google Scholar 

  3. Freeman, W.J.: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150 (1987)

    Article  Google Scholar 

  4. Klonowski, W.: Chaotic dynamics applied to signal complexity in phase space and in time domain. In: Chaos, solitons and fractals, vol. 14, pp. 1379–1387 (2002)

    Google Scholar 

  5. Bermudez, R.G., Pedro, J., Laencina, G.: Analysis of EEG signals using nonlinear dynamics and chaos: a review. In: Applied mathematics & information sciences, vol. 9, pp. 2309–2321 (2015)

    Google Scholar 

  6. Poza, J., Gómez, C., Bachiller, A., Hornero, R.: Spectral and Non-Linear analyses of spontaneous magneto-encephalographic activity in alzheimer’s disease. J. Healthc. Eng. 3, 299–322 (2012)

    Article  Google Scholar 

  7. Kunhimangalam, R., Joseph, P.K., Sujith, O.K.: Nonlinear analysis of EEG signals: surrogate data analysis. IRBM 29(4), 239–244 (2008)

    Article  Google Scholar 

  8. Li, Z., Hopefield, J.J.: Modeling the olfactory bulb and its neural oscillatory processings. Biol. Cybern. 6, 379–392 (1989)

    Article  Google Scholar 

  9. Kozma, R., Freeman, W.J.: Encoding and recall of noisy data as chaotic spatio-temporal memory patterns in the style of the brains. Int. Joint Conf. Neural Networks 5, 33–38 (2000)

    Google Scholar 

  10. Chang, H.J., Freeman, W.J.: Parameter optimization in models of the olfactory neural system. Neural Networks 9, 1–14 (1996)

    Article  Google Scholar 

  11. Eisenberg, J., Freeman, W.J., Burke, B.: Hardware architecture of a neural network model simulating pattern recognition by the olfactory bulb. Neural Networks 2, 315–325 (1989)

    Article  Google Scholar 

  12. Denis, R., Piazenti, M., Rosa, J.L.: A simulator for freeman K-sets in JAVA. Int. Joint Conf. Neural Networks (IJCNN), 1–8 (2015)

    Google Scholar 

  13. Ilin, R., Kozma, R.: Stability conditions of the full KII model of excitatory and inhibitory neural populations. Int. Joint Conf. Neural Networks, pp. 3162–3167 (2005)

    Google Scholar 

  14. Obayashi, M., Koga, S., Feng, L., Kuremoto, T., Kobayashi, K.: Handwriting character classification using Freeman’s olfactory KIII model. Artif. Life Robot. 17(2), 227–232 (2012)

    Article  Google Scholar 

  15. Zhang, J., Lou, Z., Li, G., Freeman, W.J.: Application of a novel neural network to face recognition based on DWT. Int. Conf. Biomed. Robot. Biomechatronics, pp. 1042–1046 (2006)

    Google Scholar 

  16. Yang, X., Fu, J., Lou, Z., Wang, L., Li, G., Freeman, W.J.: Tea classification based on artificial olfaction using bionic olfactory neural network. Advances in Neural Networks—ISNN 2006. Lect. Notes Comput. Sci. 3972, 343–348 (2006)

    Article  Google Scholar 

  17. Obayashi, M., Sud, R., Kuremoto, T., Mabu, S.: A class identification method using Freeman’s olfactory KIII model. J. Image Graph. 4, 130–135 (2016)

    Google Scholar 

  18. Yao, Y., Freeman, W.J.: Model of biological pattern recognition with spatially chaotic dynamics. Neural Networks 3, 153–170 (1990)

    Article  Google Scholar 

  19. Bermudez, R.G., Pedro, J., Laencina, G.: Analysis of EEG Signals using nonlinear dynamics and chaos: a review. In: Applied mathematics & information sciences, vol. 9, pp. 2309–2321 (2015)

    Google Scholar 

  20. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A comparison of waveform fractal dimension algorithms. In: IEEE transactions on circuits and systems. fundamental theory and applications, vol. 48, pp. 177–183 (2001)

    Google Scholar 

  21. Pradhan, N., Sadasivan, P.K.: The nature of dominant Lyapunov exponent and attractor dimension curves of EEG in sleep. Comput. Biol. Med. 26(5), 419–428 (1996)

    Article  Google Scholar 

  22. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  23. Das, A., Das, P., Roy, A.B.: Applicability of LyapunovExponent in EEG data analysis. Complex. Int. 9, 1–8 (2002)

    Google Scholar 

  24. Marton, L.F., Brassai, S.T., Bako, L., Losonczi, L.: Detrended fluctuation analysis of EEG signals. In: 7th international conference interdisciplinary in engineering (INTER-ENG2013), vol. 12, pp. 125–132 (2014)

    Google Scholar 

  25. Bachmann, M., Suhhova, A., Lass, J., Aadamsoo, K., Vohma, U., Hinrikus, H.: Detrended fluctuation analysis of EEG in depression. In: XIII mediterranean conference on medical and biological engineering and computing, vol. 41, pp. 694–697 (2013)

    Google Scholar 

  26. Zorick, T., Mandelkern, M.A.: Multifractal detrended fluctuation analysis of human EEG: preliminary investigation and comparison with the wavelet transform modulus maxima technique. PLoS ONE 8, 1–7 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sunitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anitta, F., Sunitha, R., Pradhan, N., Sreedevi, A. (2019). Non-linear Analysis of Time Series Generated from the Freeman K-Set Model. In: Mallick, P., Balas, V., Bhoi, A., Zobaa, A. (eds) Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-13-0617-4_21

Download citation

Publish with us

Policies and ethics