Skip to main content

NAND Flash Design

  • Chapter
  • First Online:
Inside Solid State Drives (SSDs)

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 37))

  • 2270 Accesses

Abstract

A Solid-State-Disk is made up by a Flash controller plus a bunch of NAND Flash devices. This chapter focuses on design aspects of NAND chips. The information stored in each memory cell is fully analog because it is related to the number of electrons stored in the floating gate. When we program, erase or read, electrons must be injected, extracted and counted, respectively. All these operations require a mix of analog and digital circuits that need to be properly and timely driven. Starting from a generic floorplan of a NAND memory, we guide the reader through the main building blocks. First of all, we describe the logic part of the chip, from the embedded microcontroller , who is in charge of running all the internal algorithms, to the fast DDR interface. Counting the number of electrons in the floating gate is definitely one of the most challenging task, considering that has to be performed with few transistors: sensing techniques are described in Sect. 6.5. Programming and erasing floating gate cells require voltages higher than the chip power supply. Therefore, charge pumps are used to generate all the needed voltages within the chip. In multilevel storage, cell’s gate biasing voltages need to be very accurate and voltage regulators become a must. All these circuits are described in the High Voltage Management section. Last but not least, the row decoder is introduced. This circuit has the task of properly biasing each single wordline in the NAND array, transferring the regulated high voltages to the gate of the memory cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Micheloni et al., A 4 Gb 2b/cell NAND Flash memory with embedded 5b BCH ECC for 36 MB/s system read throughput, in IEEE International Solid-State Circuits Conference 2006, Digest of Technical Papers, ISSCC 2006, Feb 2006, pp. 497–506

    Google Scholar 

  2. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, New York, 2010)

    Book  Google Scholar 

  3. G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-volatile Memories (Springer, New York, 2005)

    Google Scholar 

  4. P. Cappelletti, C. Golla, P. Olivo, E. Zanoni (eds.), Flash Memories, Chap. 5 (Kluwer, Boston, 1999)

    Google Scholar 

  5. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-volatile Memories (Springer, Dordrecht, 2008)

    Google Scholar 

  6. G. Campardo et al., An overview of Flash architectural developments. Proc. IEEE 91(4, April), 523–536 (2003)

    Article  Google Scholar 

  7. M. Annaratone, Digital CMOS Circuit Design (Kluwer Academic Publishers, Boston, 1986)

    Book  Google Scholar 

  8. www.onfi.org

  9. https://www.denali.com/en/events/webcasts/2008/togglenand/

  10. A. Chandrakasan, R. Brodersen (eds.), Low Power CMOS Design (Kluwer Academic Publishers, Boston, 1995)

    Google Scholar 

  11. H. Hikeda, A 3D packaging with 4 Gb chip-stacked DRAM and 3Gbps high-speed logic, in 3D-SIC 2007, International 3D-System Integration Conference 2007, Tokyo, Japan (2007)

    Google Scholar 

  12. T. Wada, M.E. Kenji Mami, Simple noise model and low-noise data-output buffer for ultrahigh-speed memories. IEEE J. Solid-State Circuits 25(6, December), 1586–1588 (1990)

    Article  ADS  Google Scholar 

  13. S. Dabral, T. Maloney, Basic ESD and I/O Design (Wiley, New York, 1998)

    Google Scholar 

  14. E. Chioffi, F. Maloberti, High-speed, low-switching noise CMOS memory data output buffer. IEEE J. Solid-State Circuits 29(11, November), 1359–1365 (1994)

    Article  ADS  Google Scholar 

  15. S.H. HallGarrett, W. HallJames, A. McCall, High-Speed Digital System Design—A Handbook of Interconnect Theory and Design Practices (Wiley, New York, 2000)

    Google Scholar 

  16. P. Heydari, M. Pedram, Ground bounce in digital VLS circuits. IEEE Trans. VLSI Syst. 11(2, April), 180–193 (2003)

    Article  Google Scholar 

  17. R. Senthinathan, J. Prince, Simultaneous switching ground noise calculation for packaged CMOS devices. IEEE J. Solid-State Circuits 26(November), 1724–1728 (1991)

    Article  ADS  Google Scholar 

  18. R. Senthinathan, J.L. Prince, Simultaneous Switching Noise of CMOS Devices and Systems (Kluwer Academic Publisher, Boston, 1994)

    Book  Google Scholar 

  19. S.J. Jou et al., Low switching noise and load-adaptive output buffer design techniques. IEEE JSSC 36, 1239–1249 (2001)

    ADS  Google Scholar 

  20. B. Deutschmann, T. Ostermann, CMOS output driver with reduced ground bounce and electromagnetic emission, in Solid-State Circuits Conference, ESSCIRC’03 (New York, 2003)

    Google Scholar 

  21. Y. Itoh et al., An experimental 4 Mb CMOS EEPROM with a NAND structured cell, in 36th IEEE International Solid-State Circuits Conference 1989, Digest of Technical Papers, ISSCC 1989, San Francisco, Feb 1989, pp. 134–135

    Google Scholar 

  22. T. Tanaka et al., A quick intelligent page-programming architecture and a shielded bitline sensing method for 3 V-only NAND Flash memory. IEEE J. Solid-Stare Circuits 29(11, November), 1366–1373 (1994)

    Article  ADS  Google Scholar 

  23. T.-S. Jung et al., A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage applications, in 43rd IEEE International Solid-State Circuits Conference 1996, Digest of Technical Papers, ISSCC 1996, San Francisco, Feb 1996, pp. 32–33, 412

    Google Scholar 

  24. K. Imamiya et al., A 130 mm2 256 Mb NAND Flash with shallow trench isolation technology, in IEEE International Solid-State Circuits Conference 1999, Digest of Technical Papers, ISSCC 1999, Feb 1999, pp. 112–113, 412

    Google Scholar 

  25. R.A. Cernea et al., A 34 MB/s MLC write throughput 16 Gb NAND with all bit line architecture on 56 nm technology. IEEE J. Solid-Stare Circuits 44(1, January), 186–194 (2009)

    Article  ADS  Google Scholar 

  26. L. Crippa, G. Ragone, M. Sangalli, R. Micheloni, Circuit and method for retrieving data stored in semiconductor memory cells, U.S. Patent No. 7474577, Assignee: STMicroelectronics/Hynix Semiconductor

    Google Scholar 

  27. T. Tanzawa, T. Tanaka, K. Takeuchi, Nonvolatile semiconductor memory with temperature compensation for read-verify referencing scheme, U.S. Patent No. 5864504, Assignee: Kabushiki Kaisha Toshiba (Kawasaki, JP)

    Google Scholar 

  28. T.-H. Cho, Y.-T. Lee, Multi-level Flash memory with temperature compensation, U.S. Patent No. 6870766, Assignee: Samsung Electronics Co., Ltd. (Suwon-si, KR)

    Google Scholar 

  29. K.-D. Suh et al., A 3.3 V 32 Mb NAND Flash memory with incremental step pulse programming scheme. IEEE J. Solid-State Circuits 30(11, November), 1149–1156 (1995)

    Article  ADS  Google Scholar 

  30. S. Lee et al., A 3.3 V 4 Gb four-level NAND Flash memory with 90 nm CMOS technology, in IEEE International Solid-State Circuits Conference, ISSCC, Digest of Technical Papers, San Francisco, vol. 1, Feb 2004, pp. 52–53, 513

    Google Scholar 

  31. D.-S. Byeon et al., An 8 Gb multi-level NAND Flash memory with 63 nm STI CMOS process technology, in Solid-State Circuits Conference, ISSCC, Digest of Technical Papers, San Francisco, vol. 1, Feb 2005, pp. 46–47

    Google Scholar 

  32. Y. Li et al., A 16 Gb 3b/cell NAND Flash memory in 56 nm with 8 MB/s write rate, in IEEE International Solid-State Circuits Conference 2008, Digest of Technical Papers, ISSCC 2008, San Francisco, Feb 2008, pp. 506–507, 632

    Google Scholar 

  33. N. Shibata et al., A 70 nm 16 Gb 16-Level-Cell NAND Flash memory. IEEE J. Solid-Stare Circuits 43(4, April), 929–937 (2008)

    Article  ADS  Google Scholar 

  34. C. Trinh et al. A 5.6 MB/s 64 Gb 4b/Cell NAND Flash memory in 43 nm, CMOS, in IEEE International Solid-State Circuits Conference 2009, Digest of Technical Papers, ISSCC 2009, San Francisco, Feb 2009, pp. 246–247

    Google Scholar 

  35. K. Takeuchi et al., A 56-nm CMOS 99-mm2 8-Gb multi-level NAND Flash memory with 10-MB/s program throughput. IEEE J. Solid-Stare Circuits 42(1, January), 219–232 (2007)

    Article  ADS  Google Scholar 

  36. G.A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators. Electronic Engineering (McGraw-Hill, New York, 2009)

    Google Scholar 

  37. L. Crippa, M. Sangalli, G. Ragone, R. Micheloni, Multistage regulator for charge-pump boosted voltage applications, not requiring integration of dedicated high voltage high side transistors, U.S. Patent App. 20070164811, Assignee: STMicroelectronics/Hynix Semiconductor

    Google Scholar 

  38. K. Kanda et al., A 120 mm2 16 Gb 4-MLC NAND with 43 nm CMOS technology, in 2008 IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San Francisco, Feb 2008, pp. 430–431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Crippa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crippa, L., Micheloni, R. (2018). NAND Flash Design. In: Micheloni, R., Marelli, A., Eshghi, K. (eds) Inside Solid State Drives (SSDs). Springer Series in Advanced Microelectronics, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-13-0599-3_6

Download citation

Publish with us

Policies and ethics