Skip to main content

Laurel (Laurus nobilis L.): A Less-Known Medicinal Plant to the World with Diffusion, Genomics, Phenomics, and Metabolomics for Genetic Improvement

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Medicinal plants have gained the world’s attention due to their application in various ways. Laurel (Laurus nobilis. L) is a very important medicinal plant of the Mediterranean region. Traditionally this plant has been successfully used in medicine, and its essential oil has great importance. Genomics, breeding, and metabolomics of different crops have remained the main focus of researchers, which made this plant to less known to the world. Most of the researchers only worked about the essential oil and its antibacterial and antioxidant activities. However, still almost no work has been done about the breeding aspects of this important plant. The present review offers an overview about the origin, diffusion, genomics, phenomics, breeding, and metabolomics of laurel. This information would be very helpful for the researchers who are interested in the breeding of this plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afifi, F. U., Khalil, E., Tamimi, S. O., & Disi, A. (1997). Evaluation of the gastroprotective effect of Laurus nobilis seeds on ethanol induced gastric ulcer in rats. Journal of Ethnopharmacology, 58(1), 9–14.

    Article  CAS  PubMed  Google Scholar 

  • Ahloowalia, B. S., & Maluszynski, M. (2001). Induced mutations–a new paradigm in plant breeding. Euphytica, 118(2), 167–173.

    Article  CAS  Google Scholar 

  • Al Gabbiesh, A. H., Ghabeish, M., Kleinwächter, M., & Selmar, D. (2015). Plant regeneration through somatic embryogenesis from calli derived from leaf bases of Laurus nobilis L.(Lauraceae). Plant Tissue Culture and Biotechnology, 24(2), 213–221.

    Article  Google Scholar 

  • Alcaraz-Meléndez, L., Delgado-Rodríguez, J., & Real-Cosío, S. (2004). Analysis of essential oils from wild and micropropagated plants of damiana (Turnera diffusa). Fitoterapia, 75(7), 696–701.

    Article  CAS  PubMed  Google Scholar 

  • Amin, G., Sourmaghi, M. S., Jaafari, S., Hadjagaee, R., & Yazdinezhad, A. (2007). Influence of phenological stages and method of distillation on Iranian cultivated bay leaves volatile oil. Pakistan Journal of Biological Sciences, 10(17), 2895–2899.

    Article  CAS  PubMed  Google Scholar 

  • Anonymous. (2015). Product factsheet culinary dried herbs in Europe. https://www.cbi.eu/.../product-factsheet-europe-dried-herbs, date: 22.9.2017.

  • Anonymous. (2017). TUIK, The production of non wood forest products, 1988–2016.

    Google Scholar 

  • Aqili Khorasani, M. H. (1991). Collection of drugs (Materia media) (pp. 388–389). Tehran: Enqelab-e-Eslami Publishing and Educational Organization.

    Google Scholar 

  • Arroyo, J. M., Rigueiro, C., Rodríguez, R., Hampe, A., Valido, A., Rodríguez-Sánchez, F., & Jordano, P. (2010). Isolation and characterization of 20 microsatellite loci for laurel species (Laurus, Lauraceae). American Journal of Botany, 97(5), e26–e30.

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-García, R., Martínez-Zapater, J. M., Prieto, J. F., & Álvarez-Arbesú, R. (2001). AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica, 122(1), 155–164.

    Article  Google Scholar 

  • Aytürk, Ö., & Meral, Ü. N. (2012). Structural analysis of reproductive development in staminate flowers of Laurus nobilis L. Notulae Scientia Biologicae, 4(1), 31.

    Article  Google Scholar 

  • Baloch, F. S., Karaköy, T., Demirbaş, A., Toklu, F., Özkan, H., & Hatipoğlu, R. (2014). Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal of Agriculture and Forestry, 38, 591–602.

    Article  CAS  Google Scholar 

  • Baloch, F. S., Alsaleh, A., Shahid, M. Q., Çiftçi, V., de Miera, L. E., Aasim, M., Nadeem, M. A., Aktaş, H., Özkan, H., & Hatipoğlu, R. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 12(1), e0167821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barla, A., Topçu, G., Öksüz, S., Tümen, G., & Kingston, D. G. (2007). Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food chemistry, 104, 1478–1484.

    Article  CAS  Google Scholar 

  • Benmahioul, B., Dorion, N., Kaid-Harche, M., & Daguin, F. (2012). Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell, Tissue and Organ Culture (PCTOC), 108, 353–358.

    Article  Google Scholar 

  • Billotte, N., Jourjon, M. F., Marseillac, N., Berger, A., Flori, A., Asmady, H., Adon, B., Singh, R., Nouy, B., Potier, F., & Cheah, S. C. (2010). QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theoretical and Applied Genetics, 120(8), 1673–1687.

    Article  CAS  PubMed  Google Scholar 

  • Boza, A., & Hepaksoy, S. (2016). Some leaf properties of natural Laurus nobilis L. population in Karaburun peninsula (Izmir/Turkey). In VII International Scientific Agriculture Symposium, “Agrosym 2016”, 6–9 October 2016, Jahorina, Bosnia and Herzegovina. PRO 2016 (pp. 717–722). University of East Sarajevo, Faculty of Agriculture.

    Google Scholar 

  • Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology, 12(10), 232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brás, S., Mendes-Bastos, P., Amaro, C., & Cardoso, J. (2015). Allergic contact dermatitis caused by laurel leaf oil. Contact dermatitis, 72(6), 417–419.

    Google Scholar 

  • Buerkle, C. A., Wolf, D. E., & Rieseberg, L. H. (2003). The origin and extinction of species through hybridization. In Population viability in plants 2003 (pp. 117–141). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22, 930.

    Article  CAS  Google Scholar 

  • Chabane, D., Assani, A., Bouguedoura, N., Haïcour, R., & Ducreux, G. (2007). Induction of callus formation from difficile date palm protoplasts by means of nurse culture. Comptes Rendus Biologies, 330(5), 392–401.

    Article  PubMed  Google Scholar 

  • Charlesworth, B. (1991). The evolution of sex chromosomes. Science, 251(4997), 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. C., & Chang, C. (2009). Plant regeneration through somatic embryogenesis from young leaves of Cinnamomum kanehirae Hayata. Taiwan Journal of Forest Science, 24, 117–125.

    Google Scholar 

  • Cherrat, L., Espina, L., Bakkali, M., García-Gonzalo, D., Pagán, R., & Laglaoui, A. (2014). Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. Journal of the Science of Food and Agriculture, 94(6), 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  • Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A., & Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7, 546–552 [Google Scholar] [CrossRef].

    Article  Google Scholar 

  • Choi, Y. A., Tao, R., Yonemori, K., & Sugiura, A. (2003). Genomic in situ hybridization between persimmon (Diospyros kaki) and several wild species of Diospyros. Journal of the Japanese Society for Horticultural Science, 72(5), 385–388.

    Article  CAS  Google Scholar 

  • Chourfi, A., Alaoui, T., & Echchgadda, G. (2014). In vitro propagation of the bay laurel (Laurus nobilis L) in Morocco. South Asian Journal of Experimental Biology, 96–103.

    Google Scholar 

  • Collard, B. C., Jahufer, M. Z., Brouwer, J. B., & Pang, E. C. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1–2), 169–196.

    Article  CAS  Google Scholar 

  • Conforti, F., Statti, G., Uzunov, D., & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biological and Pharmaceutical Bulletin, 29, 2056–2064.

    Article  CAS  PubMed  Google Scholar 

  • Dadalioǧlu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis ), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52, 8255–8260.

    Article  CAS  PubMed  Google Scholar 

  • Damiani, N., Fernández, N. J., Porrini, M. P., Gende, L. B., Álvarez, E., Buffa, F., Brasesco, C., Maggi, M. D., Marcangeli, J. A., & Eguaras, M. J. (2014). Laurel leaf extracts for honeybee pest and disease management: Antimicrobial, microsporicidal, and acaricidal activity. Parasitology Research, 113, 701–709.

    Article  PubMed  Google Scholar 

  • Davis, P. H. (1982). Flora of Turkey and East Aegean Islands (Vol. 7, pp. 534–535). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Deputy, J., Ming, R., Ma, H., Liu, Z., Fitch, M., Wang, M., Manshardt, R., & Stiles, J. L. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). TAG Theoretical and Applied Genetics, 106(1), 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Derwich, E., Benziane, Z., & Boukir, A. (2009). Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian Journal of Basic and Applied Sciences, 3, 3818–3824.

    CAS  Google Scholar 

  • Dias, M. I., Barros, L., Dueñas, M., Alves, R. C., Oliveira, M. B., Santos-Buelga, C., & Ferreira, I. C. (2014). Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chemistry, 156, 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Ehrendorfer, F., Krendl, F., Habeler, E., & Sauer, W. (1968). Chromosome numbers and evolution in primitive angiosperms. Taxon, 17, 337–353.

    Article  Google Scholar 

  • Ekren, S., Yerlikaya, O., Tokul, H. E., Akpınar, A., & Accedil, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. African Journal of Microbiology Research, 7(5), 383–388.

    Article  CAS  Google Scholar 

  • El, S. N., Karagozlu, N., Karakaya, S., & Sahın, S. (2014). Antioxidant and antimicrobial activities of essential oils extracted from Laurus nobilis L. leaves by using solvent-free microwave and hydrodistillation. Food and Nutrition Sciences, 5(02), 97.

    Article  Google Scholar 

  • Elmeer, K., & Mattat, I. (2012). Marker-assisted sex differentiation in date palm using simple sequence repeats. 3 Biotech, 2, 241–247.

    Article  PubMed Central  Google Scholar 

  • Endress, P. K. (1994). Floral structure and evolution of primitive angiosperms: Recent advances. Plant Systematics and Evolution, 192, 79–97.

    Article  Google Scholar 

  • Erat, A. Z., Tekocak, S., Yilmazer, C., & Bilir, N. (2016). Yield and characteristics of leaf in bay laurel (Laurus nobilis L.) populations.

    Google Scholar 

  • Farnsworth, N. R., & Soejarto, D. D. (1991). Global importance of medicinal plants. In The conservation of medicinal plants (pp. 25–51). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fernandez-Andrade, C. M., da Rosa, M. I., Borges, F., Iwanaga, C. C., Gonçalves, J. E., Cortez, D. O., Martins, C. V., Linde, G. A., Simões, M. A., Lobo, V. S., & Gazim, Z. C. (2016). Chemical composition and antifungal activity of essential oil and fractions extracted from the leaves of Laurus nobilis L. cultivated in southern Brazil. Journal of Medicinal Plants Research, 10, 865–871.

    Article  CAS  Google Scholar 

  • Franchi, G. G., Piotto, B., Nepi, M., Baskin, C. C., Baskin, J. M., & Pacini, E. (2011). Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. Journal of Experimental Botany, 62(15), 5267–5281.

    Article  CAS  PubMed  Google Scholar 

  • Gros-Balthazard, M. (2013, November 1). Hybridization in the genus Phoenix: A review. Emirates Journal of Food and Agriculture, 25(11), 831.

    Article  Google Scholar 

  • Hajyzadeh, M., Cavusoglu, A., Sulusoglu, M., & Unver, T. (2013). DNA SSR fingerprinting analysis among cherry laurel (Prunus laurocerasus L.) types. Journal of Food, Agriculture & Environment, 11, 630–638.

    Google Scholar 

  • Hufford, L. A. (1996). The origin and early evolution of angiosperm stamens. In The anther: Form, function, and phylogeny (pp. 58–91). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jain, S. M. (2012). In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emirates Journal of Food and Agriculture, 24(5), 400.

    Google Scholar 

  • Jemâa, J. M., Tersim, N., Toudert, K. T., & Khouja, M. L. (2012). Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. Journal of Stored Products Research, 48, 97–104.

    Article  CAS  Google Scholar 

  • Juergens, U. R., Dethlefsen, U., Steinkamp, G., Gillissen, A., Repges, R., & Vetter, H. (2003). Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respiratory Medicine, 97, 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Kafkas, S., Cetiner, S., Perl-Treves, R., & Ada Nissim-Levi, A. N. (2001). Development of sex-associated RAPD markers in wild Pistacia species. The Journal of Horticultural Science and Biotechnology, 76(2), 242–246.

    Article  CAS  Google Scholar 

  • Khodaeiaminjan, M., Kafkas, E., Güney, M., & Kafkas, S. (2017). Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Molecular Breeding, 37(8), 98.

    Article  CAS  Google Scholar 

  • Kress, W. J. (1986). Exineless pollen structure and pollination systems of tropical Heliconia (Heliconiaceae) (Linnean society symposium series No. 12, pp. 329–345). London: Academic.

    Google Scholar 

  • Kumar, S., Sing, J., & Sharma, A. (2001). Bay leaves. In K. V. Peter (Ed.), Handbook of herbs and spices (pp. 52–61). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Laurent, B. (2007). Le grand livre des plantes aromatiques (Vol. 108). Paris: Rustica.

    Google Scholar 

  • Leung, A. Y., & Foster, S. (1999). Alloro, Enciclopedia delle Piante Medicinali; Aporie (pp. 30–31). Rome.

    Google Scholar 

  • Leung, A. Y., & Foster, S. (2003). Encyclopedia of common natural ingredients used in food, drugs and cosmetics (2nd ed. pp. 69–71). Hoboken: Wiley- Interscience.

    Google Scholar 

  • Liu, H., Cao, F., Yin, T., & Chen, Y. (2017). A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Frontiers in Plant Science, 8, 1041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzouki, H., Elaissi, A., Khaldi, A., Bouzid, S., Falconieri, D., Marongiu, B., Piras, A., & Porcedda, S. (2009). Seasonal and geographical variation of Laurus nobilis L. essential oil from Tunisia. The Open Natural Products Journal, 2, 86–91.

    Article  CAS  Google Scholar 

  • Mohamed, A. S., Ahmed, W., Rabia, S. S., & Mourad, M. M. (2016). Implications of morphology and molecular criteria in taxonomy of lauraceae juss. The Egyptian Journal of Experimental Biology (Botany), 45–52.

    Google Scholar 

  • Muñiz-Márquez, D. B., Martínez-Ávila, G. C., Wong-Paz, J. E., Belmares-Cerda, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2013). Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrasonics Sonochemistry, 20, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., comertpay, G., Yildiz, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Ozkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding; current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32, 261. http://sci-hub.tw/10.1080/13102818.2017.1400401.

  • Nepi, M., Franchi, G. G., & Padni, E. (2001). Pollen hydration status at dispersal: Cytophysiological features and strategies. Protoplasma, 216(3–4), 171.

    Article  CAS  PubMed  Google Scholar 

  • Nostro, A., Germano, M. P., D’angelo, V., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters in Applied Microbiology, 30, 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Filho, A. A., Fernandes, H. M., & Assis, T. J. (2015). Lauraceae’s family: A brief review of cardiovascular effects. International Journal of Pharmacognosy and Phytochemical Research, 7, 22–26.

    Google Scholar 

  • Özcan, M., & Chalchat, J. C. (2005). Effect of different locations on the chemical composition of essential oils of laurel (Laurus nobilis L.) leaves growing wild in Turkey. Journal of Medicinal Food, 8, 408–411.

    Article  PubMed  Google Scholar 

  • Pacini, E., Franchi, G. G., & Ripaccioli, M. (1999). Ripe pollen structure and histochemistry of some gymnosperms. Plant Systematics and Evolution, 217, 81–99.

    Article  Google Scholar 

  • Pacini, E., Sciannandrone, N., & Nepi, M. (2014). Floral biology of the dioecious species Laurus nobilis L.(Lauraceae). Flora-Morphology, Distribution, Functional Ecology of Plants, 209(3), 153–163.

    Article  Google Scholar 

  • Pannell, J. R., OBBARD, D. J., & BUGGS, R. J. (2004). Polyploidy and the sexual system: What can we learn from Mercurialis annua? Biological Journal of the Linnean Society, 82(4), 547–560.

    Article  Google Scholar 

  • Peixoto, L. R., Rosalen, P. L., Ferreira, G. L., Freires, I. A., de Carvalho, F. G., Castellano, L. R., & de Castro, R. D. (2017). Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology, 73, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Polat, S., Gülbaba, A. G., Tüfekçi, S., & Özkurt, A. (2009). Determination of the Most Suitable Leaf Harvesting Methods of Bay Laurel (Laurus nobilis L.) and Its Economy (The Case of Tarsus). Minister of Environment and Forestry Publish no: 391(56), 55p.

    Google Scholar 

  • Predieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture, 64, 185–210.

    Article  CAS  Google Scholar 

  • Renner, S. S., & Ricklefs, R. E. (1995). Dioecy and its correlates in the flowering plants. American Journal of Botany, 82, 596–606.

    Article  Google Scholar 

  • Rodríguez-Sánchez, F., Guzmán, B., Valido, A., Vargas, P., & Arroyo, J. (2009). Late Neogene history of the laurel tree (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations. Journal of Biogeography, 36, 1270–1281.

    Article  Google Scholar 

  • Sahijram, L., Soneji, J. R., & Bollamma, K. T. (2003). Invited review: Analyzing somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cellular and Developmental Biology-Plant, 39, 551–556.

    Article  Google Scholar 

  • Said, C. M., & Hussein, K. (2014). Determination of the chemical and genetic differences of laurus collected from three different geographic and climatic areas in Lebanon. European Scientific Journal, ESJ, 10(10).

    Google Scholar 

  • Santa-Catarina, C., Hanai, L. R., Dornelas, M. C., Viana, A. M., & Floh, E. I. (2004). SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell, Tissue and Organ Culture, 79(1), 53–61.

    Article  CAS  Google Scholar 

  • Santoyo, S., Lloría, R., Jaime, L., Ibañez, E., Señoráns, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. European Food Research and Technology, 222, 565–571.

    Article  CAS  Google Scholar 

  • Sari, A. O., Oguz, B., & Bilgic, A. (2006). Breaking seed dormancy of laurel (Laurus nobilis L.). New Forests, 31, 403–408.

    Article  Google Scholar 

  • Shokoohinia, Y., Yegdaneh, A., Amin, G., & Ghannadi, A. (2014). Seasonal variations of Laurus nobilis L. leaves volatile oil components in Isfahan, Iran. Research Journal of Pharmacognosy, 1(3), 1–6.

    CAS  Google Scholar 

  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414.

    Article  CAS  Google Scholar 

  • Souayah, N., Khouja, M. L., Khaldi, A., Rejeb, M. N., & Bouzid, S. (2002). Breeding improvement of Laurus nobilis L. by conventional and in vitro propagation techniques. Journal of Herbs, Spices & Medicinal Plants, 9, 101–105.

    Article  CAS  Google Scholar 

  • Verdianrizi, M., & Hadjiakhoondi, A. (2008). Essential oil composition of Laurus nobilis L. of different growth stages growing in Iran. Zeitschrift für Naturforschung C, 63, 785–788.

    Article  CAS  Google Scholar 

  • Vital, P. G., & Rivera, W. L. (2009). Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. Extracts. Journal of Medicinal Plants Research, 3, 511–518.

    Google Scholar 

  • Witjaksono, W. (2003). Peran bioteknologi dalam pemuliaan tanaman buah tropika. In Seminar Nasional Peran Bioteknologi dalam Pengembangan Buah Tropika. Kementerian Riset dan Teknologi RI & Pusat Kajian Buah Buahan Tropika, IPB. Bogor 2003 (Vol. 9).

    Google Scholar 

  • Wu, Q., Chen, Y., Wang, Y., & Lin, L. (2015). Sex differential marker FD for rapid sex identification of Litsea cubeba. Genetics and Molecular Research, 14, 12820–12827.

    Article  CAS  PubMed  Google Scholar 

  • Yalçın, H., Anık, M., Şanda, M. A., & Çakır, A. (2007). Gas chromatography/mass spectrometry analysis of Laurus nobilis essential oil composition of northern Cyprus. Journal of Medicinal Food, 10(4), 715–719.

    Article  CAS  PubMed  Google Scholar 

  • Yaldiz, G., Çamlica, M., Nadeem, M. A., Nawaz, M. A., & Baloch, F. S. (2018). Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry, 42. http://sci-hub.tw/10.3906/tar-1708-32.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadeem, M.A. et al. (2018). Laurel (Laurus nobilis L.): A Less-Known Medicinal Plant to the World with Diffusion, Genomics, Phenomics, and Metabolomics for Genetic Improvement. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_28

Download citation

Publish with us

Policies and ethics