Skip to main content

Roles of Single Cell Systems Biomedicine in Lung Diseases

  • Chapter
  • First Online:
Single Cell Biomedicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1068))

Abstract

Single cell sequencing is important to detect the gene heterogeneity between cells, as the part of single-cell systems biology which combines computational science, mathematical modelling and high-throughput technologies with biological function and organization in the cell. We initially arise the question how to integrate the outcomes of single-cell systems biology with clinical phenotype, interpret alterations of single-cell gene sequencing and function in patient response to therapies, and understand the significance of single-cell systems biology in the discovery and development of new molecular diagnostics and therapeutics. The present review furthermore focuses the significance of singe cell systems biology in respiratory diseases and calls the special attention from scientists who are working on single cell systems biology to improve the diagnosis and therapy for patients with lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang X (2016) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361. https://doi.org/10.1007/s10565-016-9350-0

    Article  PubMed  Google Scholar 

  2. Liu X, Cho WC (2017) Precision medicine in immune checkpoint blockade therapy for non-small cell lung cancer. Clin Transl Med 6(1):7. https://doi.org/10.1186/s40169-017-0136-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reddy KP, Kong CY, Hyle EP, Baggett TP, Huang M, Parker RA et al (2017) Lung Cancer mortality associated with smoking and smoking cessation among people living with HIV in the United States. JAMA Intern Med 177(11):1613–1621. https://doi.org/10.1001/jamainternmed.2017.4349

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fang X, Netzer M, Baumgartner C, Bai C, Wang XD (2013) Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer. Cancer Treat Rev 39(1):77–88

    Article  CAS  PubMed  Google Scholar 

  5. Niu F, Wang DC, Lu J, Wu W, Wang X (2016) Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med 20(9):1789–1795. https://doi.org/10.1111/jcmm.12868

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427. https://doi.org/10.1007/s10565-017-9400-2

    Article  PubMed  Google Scholar 

  7. Lawson MJ, Camsund D, Larsson J, Baltekin Ö, Fange D, Elf J (2017) In situ genotyping of a pooled strain library after characterizing complex phenotypes. Mol Syst Biol 13(10):947. https://doi.org/10.15252/msb.20177951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liu H, Dong P, Ioannou MS, Li L, Shea J, Pasolli HA, et al (2017) Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling. Proc Natl Acad Sci U S A. 115(2):343–348. 201713895. https://doi.org/10.1073/pnas.1713895115

    Article  CAS  Google Scholar 

  9. Zhao H, Adler KB, Bai C, Tang F, Wang X (2006) Epithelial proteomics in multiple organs and tissues: similarities and variations between cells, organs, and diseases. J Proteome Res 5(4):743–755

    Article  CAS  PubMed  Google Scholar 

  10. Wang XD (2015) In: Wang XD (ed) Single Cell Sequencing and Systems Immunology, Translational bioinformatics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9753-5

    Chapter  Google Scholar 

  11. Zhang D, Wang X (2015) A simple protocol for single lung cancer cell isolation-making the single cell based lung cancer research feasible for individual investigator. In: Wang X (ed) Single cell sequencing and systems immunology, vol 5. Springer Netherlands, Dordrecht, pp 165–174

    Google Scholar 

  12. Wang J, Min Z, Jin M, Wang X (2015) Protocol for single cell isolation by flow cytometry. In: Wang X (ed) Single cell sequencing and systems immunology, vol 5. Springer Netherlands, Dordrecht, pp 155–163

    Google Scholar 

  13. Wang W, Gao D, Wang X (2017) Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 34(1):1–6. https://doi.org/10.1007/s10565-017-9404-y

    Article  PubMed  CAS  Google Scholar 

  14. Kim KT, Lee HW, Lee HO, Kim SC, Seo YJ, et al (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16(1):127. Published online 2015 19. https://doi.org/10.1186/s13059-015-0692-3

  15. McGranahan N, Swanton C (2017) Cancer evolution constrained by the immune microenvironment. Cell 170(5):825–827. https://doi.org/10.1016/j.cell.2017.08.012

    Article  PubMed  CAS  Google Scholar 

  16. Wang W, Wang X (2017) Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 33(3):207–210. https://doi.org/10.1007/s10565-017-9396-7

    Article  PubMed  CAS  Google Scholar 

  17. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375. https://doi.org/10.1038/nature13173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang DC, Wang W, Zhu B, Wang X (2018) Lung Cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharmacol Toxicol 58:531–546. https://doi.org/10.1146/annurev-pharmtox-010716-104523

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki A, Matsushima K, Makinoshima H, Sugano S, Kohno T, Tsuchihara K, Suzuki Y (2015) Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol 16:66. https://doi.org/10.1186/s13059-015-0636-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ellsworth DL, Blackburn HL, Shriver CD, Rabizadeh S, Soon-Shiong P, Ellsworth RE (2017) Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis. Clin Transl Med 6(1):15. https://doi.org/10.1186/s40169-017-0145-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol. 2017 Apr;33(2):83–97. doi: 10.1007/s10565-016-9367-4.

    Article  PubMed  CAS  Google Scholar 

  22. Shi L, Dong N, Ji D, Huang X, Ying Z, Wang X, Chen C (2017) Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cells. Cell Biol Toxicol.:1–11. https://doi.org/10.1007/s10565-017-9401-1

  23. Wang X, Adler KB, Erjefalt J, Bai CB (2007) Role of airway epithelial dysfunction in development of acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med 1(1):149–155. https://doi.org/10.1586/17476348.1.1.149

    Article  PubMed  CAS  Google Scholar 

  24. Shi L, Dong N, Fang XC, Wang XD (2016) Regulatory mechanisms of TGF-β1-induced fibrogenesis of human alveolar epithelial cells. J Cell Mol Med 20(11):2183–2193. https://doi.org/10.1111/jcmm.12918. Epub 2016 Jul 15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B et al (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517(7536):621–625. https://doi.org/10.1038/nature14112

    Article  PubMed  CAS  Google Scholar 

  26. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J et al (2016) Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1(20):e90558

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kao FS, Pan YR, Hsu RQ, Chen HM (2012) Efficacy verification and microscopic observations of an anticancer peptide, CB1a, on single lung cancer cell. Biochim Biophys Acta 1818(12):2927–2935. https://doi.org/10.1016/j.bbamem.2012.07.019

    Article  PubMed  CAS  Google Scholar 

  28. Villarini M1, Scassellati-Sforzolini G, Moretti M, Pasquini R (2000) In vitro genotoxicity of terbutryn evaluated by the alkaline single-cell microgel-electrophoresis “comet” assay. Cell Biol Toxicol 16(5):285–292

    Article  Google Scholar 

  29. Taira Z, Yamase D, Ueda Y (2007) A new technique for assaying cytochrome P450 enzyme activity in a single cell. Cell Biol Toxicol 23(3):143–151

    Article  CAS  PubMed  Google Scholar 

  30. Du Y, Guo M (2015) Whitsett JA, et al. ‘LungGENS’: a web-based tool for mapping single-cell gene expression in the developing lung. Thorax 70:1092–1094

    Article  PubMed  Google Scholar 

  31. Du Y, Kitzmiller JA, Sridharan A, Ak P, Bridges JP, Misra PS et al (2017) Lung gene expression analysis (LGEA): an integrative web portal for comprehensive gene expression data analysis in lung development. Thorax 72(5):481–484. https://doi.org/10.1136/thoraxjnl-2016-209598

    Article  PubMed  Google Scholar 

  32. Guo M, Wang H, Potter SS et al (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol 11:e1004575. https://doi.org/10.1371/journal.pcbi.1004575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J et al (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14(3):297–301. https://doi.org/10.1038/nmeth.4177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fang H, Wang W (2016) Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol 32(6):465–467

    Article  PubMed  Google Scholar 

  35. Sakuma T, Yamamoto T (2017) Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol 33(6):501–505. https://doi.org/10.1007/s10565-017-9409-6

    Article  PubMed  Google Scholar 

  36. Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, Adriouch S et al (2016) CRISPR-barcoding for Intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 63(3):526–538. https://doi.org/10.1016/j.molcel.2016.06.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park S, Zhang X, Li C, Yin C, Li J, Fallon JT et al (2017) Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells. Toxicol Appl Pharmacol 330:30–39. https://doi.org/10.1016/j.taap.2017.07.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Castillo A (2016) Gene editing using CRISPR-Cas9 for the treatment of lung cancer. Colomb Med (Cali) 47(4):178–180

    Google Scholar 

  39. Tang H, Shrager JB (2016) CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med 8(2):83–85. https://doi.org/10.15252/emmm.201506006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM et al (2017) Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol 33(3):233–250. https://doi.org/10.1007/s10565-016-9377-2. Epub 2016 Dec 30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, Y., Chen, X., Wang, X. (2018). Roles of Single Cell Systems Biomedicine in Lung Diseases. In: Gu, J., Wang, X. (eds) Single Cell Biomedicine. Advances in Experimental Medicine and Biology, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-13-0502-3_15

Download citation

Publish with us

Policies and ethics