Skip to main content

Graphene-Functionalized Biomimetic Scaffolds for Tissue Regeneration

  • Chapter
  • First Online:
Biomimetic Medical Materials

Abstract

Graphene is a two-dimensional atomic layer of graphite, where carbon atoms are assembled in a honeycombed lattice structure. Recently, graphene family nanomaterials, including pristine graphene, graphene oxide and reduced graphene oxide, have increasingly attracted a great deal of interest from researchers in a variety of science, engineering and industrial fields because of their unique structural and functional features. In particular, extensive studies have been actively conducted in the biomedical and related fields, including multidisciplinary and emerging areas, as their stimulating effects on cell behaviors have been becoming an increasing concern. Herein, we are attempting to summarize some of recent findings in the fields of tissue regeneration concerning the graphene family nanomaterial-functionalized biomimetic scaffolds, and to provide the promising perspectives for the possible applications of graphene family nanomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahadian S, Ramón-Azcón J, Chang H, Liang X, Kaji H, Shiku H, Nakajima K, Ramalingam M, Wu H, Matsue T (2014) Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Adv 4(19):9534–9541

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E (2013) Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 1(45):6291–6301

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Shahsavar M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Abouei E, Hatamie S, Ghasemi E (2014) Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66:395–406

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Shirazian SA, Rahighi R (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77

    Article  CAS  Google Scholar 

  • Bajaj P, Rivera JA, Marchwiany D, Solovyeva V, Bashir R (2014) Graphene-based patterning and differentiation of C2C12 myoblasts. Adv Healthc Mater 3(7):995–1000

    Article  CAS  PubMed  Google Scholar 

  • Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366

    Article  CAS  PubMed  Google Scholar 

  • Baweja L, Dhawan A (2018) Chapter 12 Computational approaches for predicting nanotoxicity at the molecular level. In: Dhawan A, Anderson D, Shanker R (eds) Nanotoxicology: experimental and computational perspectives, vol 35. Royal Society of Chemistry, CambrIdge, pp 304–327. https://doi.org/10.1039/9781782623922-00304

    Chapter  Google Scholar 

  • Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, Cipollone S, Prato M, Ballerini L (2011) Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue interactions. J Neurosci 31(36):12945–12953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha C, Shin SR, Gao X, Annabi N, Dokmeci MR, Tang XS, Khademhosseini A (2014) Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10(3):514–523

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):1974

    Article  PubMed Central  CAS  Google Scholar 

  • Chaudhuri B, Bhadra D, Mondal B, Pramanik K (2014) Biocompatibility of electrospun graphene oxide–poly (ε-caprolactone) fibrous scaffolds with human cord blood mesenchymal stem cells derived skeletal myoblast. Mater Lett 126:109–112

    Article  CAS  Google Scholar 

  • Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri B, Mondal B, Kumar S, Sarkar SC (2016) Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly (ε-caprolactone, PCL) composite meshes. Mater Lett 182:194–197

    Article  CAS  Google Scholar 

  • Chen G-Y, Pang D-P, Hwang S-M, Tuan H-Y, Hu Y-C (2012a) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Qi Y, Tai Z, Yan X, Zhu F, Xue Q (2012b) Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur Polym J 48(6):1026–1033

    Article  CAS  Google Scholar 

  • Cherukula K, Manickavasagam Lekshmi K, Uthaman S, Cho K, Cho C-S, Park I-K (2016) Multifunctional inorganic nanoparticles: Recent progress in thermal therapy and imaging. Nanomaterials 6(4):76

    Article  PubMed Central  CAS  Google Scholar 

  • Ciriza J, del Burgo LS, Virumbrales-Muñoz M, Ochoa I, Fernandez LJ, Orive G, Hernandez RM, Pedraz JL (2015) Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int J Pharm 493(1):260–270

    Article  CAS  PubMed  Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering – a review. Carbohydr Polym 92(2):1262–1279

    Article  CAS  PubMed  Google Scholar 

  • Depan D, Girase B, Shah JS, Misra RDK (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445

    Article  CAS  PubMed  Google Scholar 

  • Díez-Pascual AM, Díez-Vicente AL (2016) Poly (propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl Mater Interfaces 8(28):17902–17914

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    Article  CAS  PubMed  Google Scholar 

  • Golafshan N, Kharaziha M, Fathi M (2017) Tough and conductive hybrid graphene-PVA: alginate fibrous scaffolds for engineering neural construct. Carbon 111:752–763

    Article  CAS  Google Scholar 

  • Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Lei B, Li P, Ma PX (2015) Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2(1):47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho J, Walsh C, Yue D, Dardik A, Cheema U (2017) Current advancements and strategies in tissue engineering for wound healing: a comprehensive review. Adv Wound Care 6(6):191–209

    Article  Google Scholar 

  • Hood E (2004) Nanotechnology: looking as we leap. Environ Health Perspect 112(13):A740

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92(2):456–463

    Article  CAS  PubMed  Google Scholar 

  • Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94(1):339–344

    Article  CAS  PubMed  Google Scholar 

  • Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Sim M, Kim S, Yang S, Yoo Y, Park J-H, Yoon TH, Kim M-G, Lee JY (2016) Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater 48:100–109

    Article  PubMed  CAS  Google Scholar 

  • Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):4323–4329

    Article  CAS  Google Scholar 

  • Kim MJ, Lee JH, Shin YC, Jin L, Hong SW, Han D-W, Kim Y-J, Kim B (2015a) Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. J Korean Phys Soc 67(11):1910–1914

    Article  CAS  Google Scholar 

  • Kim T-H, Shah S, Yang L, Yin PT, Hossain MK, Conley B, Choi J-W, Lee K-B (2015b) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9(4):3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-W, Shin YC, Lee J-J, Bae E-B, Jeon Y-C, Jeong C-M, Yun M-J, Lee S-H, Han D-W, Huh J-B (2017) The effect of reduced graphene oxide-coated biphasic calcium phosphate bone graft material on osteogenesis. Int J Mol Sci 18(8):1725

    Article  PubMed Central  CAS  Google Scholar 

  • Krueger E, Chang AN, Brown D, Eixenberger J, Brown R, Rastegar S, Yocham KM, Cantley KD, Estrada D (2016) Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater Sci Eng 2(8):1234–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34(8):2017–2023

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chatterjee K (2015) Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale 7(5):2023–2033

    Article  CAS  PubMed  Google Scholar 

  • Lalwani G, D’Agati M, Gopalan A, Rao M, Schneller J, Sitharaman B (2017) Three-dimensional macroporous graphene scaffolds for tissue engineering. J Biomed Mater Res A 105(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Lam C-W, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Shin YC, Jin OS, Han D-W, Kang SH, Hong SW, Kim JM (2012a) Enhanced neurite outgrowth of PC-12 cells on graphene-monolayer-coated substrates as biomimetic cues. J Korean Phys Soc 61(10):1696–1699

    Article  CAS  Google Scholar 

  • Lee JH, Shin YC, Jin OS, Lee EJ, Han D-W, Kang SH, Hong SW, Ahn JY, Kim SH (2012b) Cytotoxicity evaluations of pristine graphene and carbon nanotubes in fibroblastic cells. J Korean Phys Soc 61(6):873–877

    Article  CAS  Google Scholar 

  • Lee EJ, Lee JH, Shin YC, Hwang D-G, Kim JS, Jin OS, Jin L, Hong SW, Han D-W (2014) Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater Res 18 (1):18-24.

    Google Scholar 

  • Lee JH, Shin YC, Jin OS, Kang SH, Hwang Y-S, Park J-C, Hong SW, Han D-W (2015a) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, Jeong C-M, Huh JB, Han D-W (2015b) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WC, Lim CH, Su C, Loh KP, Lim CT (2015c) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee S-M, Shin YC, Park JH, Hong SW, Kim B, Lee JJ, Lim D, Lim Y-J, Huh JB (2016a) Spontaneous osteodifferentiation of bone marrow-derived mesenchymal stem cells by hydroxyapatite covered with graphene nanosheets. J Biomater Tissue Eng 6(10):818–825

    Article  Google Scholar 

  • Lee JH, Lee Y, Shin YC, Kim MJ, Park JH, Hong SW, Kim B, Oh J-W, Park KD, Han D-W (2016b) In situ forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation. Appl Spectrosc Rev 51(7-9):527–539

    Article  CAS  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    Article  CAS  PubMed  Google Scholar 

  • Li X, MacEwan MR, Xie J, Siewe D, Yuan X, Xia Y (2010) Fabrication of density gradients of biodegradable polymer microparticles and their use in guiding neurite outgrowth. Adv Funct Mater 20(10):1632–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao J, Qu Y, Chu B, Zhang X, Qian Z (2015) Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 5:9879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28(2):354–369

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Thomopoulos S, Xia Y (2012) Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1(1):10–25

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dang Z, Wang Y, Huang J, Li H (2014) Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties. Carbon 67:250–259

    Article  CAS  Google Scholar 

  • Lu B, Li T, Zhao H, Li X, Gao C, Zhang S, Xie E (2012) Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9):2978–2982

    Article  CAS  PubMed  Google Scholar 

  • MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Article  CAS  Google Scholar 

  • Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S (2017) Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon 115:608–616

    Article  CAS  Google Scholar 

  • Martín C, Merino S, González-Domínguez JM, Rauti R, Ballerini L, Prato M, Vázquez E (2017) Graphene improves the biocompatibility of polyacrylamide hydrogels: 3D polymeric scaffolds for neuronal growth. Sci Rep 7:10942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray E, Thompson BC, Sayyar S, Wallace GG (2015) Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. Polym Degrad Stab 111:71–77

    Article  CAS  Google Scholar 

  • Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447

    Article  CAS  PubMed  Google Scholar 

  • Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee P-LR, Ahn J-H, Hong BH, Pastorin G (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  CAS  PubMed  Google Scholar 

  • Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie W, Peng C, Zhou X, Chen L, Wang W, Zhang Y, Ma PX, He C (2017) Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 116:325–337

    Article  CAS  Google Scholar 

  • Nishida E, Miyaji H, Takita H, Kanayama I, Tsuji M, Akasaka T, Sugaya T, Sakagami R, Kawanami M (2014) Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Jpn J Appl Phys 53(6S):06JD04

    Article  CAS  Google Scholar 

  • Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M (2015) Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 4(8):1114–1133

    Article  CAS  PubMed  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  • Parak WJ, George M, Kudera M, Gaub HE, Behrends JC (2001) Effects of semiconductor substrate and glia-free culture on the development of voltage-dependent currents in rat striatal neurones. Eur Biophys J 29(8):607–620

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):H263–H267

    Article  CAS  PubMed  Google Scholar 

  • Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon JK, Park YH, Cho SP, Lee S, Hong BH (2014) Graphene–regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3(2):176–181

    Article  CAS  PubMed  Google Scholar 

  • Park E-J, Lee G-H, Han BS, Lee B-S, Lee S, Cho M-H, Kim J-H, Kim D-W (2015a) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89(9):1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim B, Han J, Oh J, Park S, Ryu S, Jung S, Shin J-Y, Lee BS, Hong BH (2015b) Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 9(5):4987–4999

    Article  CAS  PubMed  Google Scholar 

  • Park KO, Lee JH, Park JH, Shin YC, Huh JB, Bae J-H, Kang SH, Hong SW, Kim B, Yang DJ (2016) Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: spectroscopic analysis and animal study. Appl Spectrosc Rev 51(7-9):540–551

    Article  CAS  Google Scholar 

  • Patel A, Mukundan S, Wang W, Karumuri A, Sant V, Mukhopadhyay SM, Sant S (2016a) Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Acta Biomater 32:77–88

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Moon HJ, Ko DY, Jeong B (2016b) Composite system of graphene oxide and polypeptide thermogel as an injectable 3D scaffold for adipogenic differentiation of tonsil-derived mesenchymal stem cells. ACS Appl Mater Interfaces 8(8):5160–5169

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Feng P, Wu P, Huang W, Yang Y, Guo W, Gao C, Shuai C (2017) Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci Rep 7:46604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Bennet KE, Khan T, Ciubuc JD, Manciu FS (2016) Raman and conductivity analysis of graphene for biomedical applications. Materials 9(11):897

    Article  PubMed Central  CAS  Google Scholar 

  • Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110(9):5332–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun Y-P, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5(10):8100–8107

    Article  CAS  PubMed  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayyar S, Murray E, Thompson BC, Chung J, Officer DL, Gambhir S, Spinks GM, Wallace GG (2015) Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater Chem B 3(3):481–490

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94(17):8948–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong JM, Kim B-C, Park J-H, Kwon IK, Mantalaris A, Hwang Y-S (2010) Stem cells in bone tissue engineering. Biomed Mater 5(6):062001

    Article  PubMed  CAS  Google Scholar 

  • Serrano MC, Patiño J, García-Rama C, Ferrer ML, Fierro JLG, Tamayo A, Collazos-Castro JE, del Monte F, Gutierrez MC (2014) 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J Mater Chem B 2(34):5698–5706

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, Mola GT (2017) Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0671-x

    Article  CAS  Google Scholar 

  • Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Jung SM, Oh JH, Dokmeci MR, Tang XS (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25(44):6385–6391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YC, Lee JH, Jin L, Kim MJ, Kim YJ, Hyun JK, Jung TG, Hong SW, Han DW (2015a) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol 13:21

    Article  CAS  Google Scholar 

  • Shin YC, Lee JH, Jin OS, Kang SH, Hong SW, Kim B, Park J-C, Han D-W (2015b) Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts. Carbon 95:1051–1060

    Article  CAS  Google Scholar 

  • Shin YC, Lee JH, Kim MJ, Hong SW, Kim B, Hyun JK, Choi YS, Park J-C, Han D-W (2015c) Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J Biol Eng 9(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Kt W (2016a) Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27):3677–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YC, Shin DM, Lee EJ, Lee JH, Kim JE, Song SH, Hwang DY, Lee JJ, Kim B, Lim D, Hyon S-H, Lim Y-J, Han D-W (2016b) Hyaluronic acid/PLGA core/shell fiber matrices loaded with EGCG beneficial to diabetic wound healing. Adv Healthc Mater 5(23):3035–3045

    Article  CAS  PubMed  Google Scholar 

  • Shin YC, Jin L, Lee JH, Jun S, Hong SW, Kim C-S, Kim Y-J, Hyun JK, Han D-W (2017a) Graphene oxide-incorporated PLGA-collagen fibrous matrices as biomimetic scaffolds for vascular smooth muscle cells. Sci Adv Mater 9(2):232–237

    Article  CAS  Google Scholar 

  • Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han D-W (2017b) Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. J Biomater Sci Polym Ed. https://doi.org/10.1080/09205063.09202017.01348738

  • Shin YC, Kim J, Kim SE, Song S-J, Hong SW, Oh J-W, Lee J, Park J-C, Hyon S-H, Han D-W (2017c) RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Regen Biomater 4(3):159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin YC, Song S-J, Hong SW, Jeong SJ, Chrzanowski W, Lee J-C, Han D-W (2017d) Multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds. Nanomaterials 7(11):369

    Article  PubMed Central  CAS  Google Scholar 

  • Shuai C, Feng P, Gao C, Shuai X, Xiao T, Peng S (2015) Graphene oxide reinforced poly (vinyl alcohol): nanocomposite scaffolds for tissue engineering applications. RSC Adv 5(32):25416–25423

    Article  CAS  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44

    Article  CAS  PubMed  Google Scholar 

  • Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050

    Article  CAS  Google Scholar 

  • Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789

    Article  CAS  Google Scholar 

  • Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G (2013) Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34(27):6402–6411

    Article  CAS  PubMed  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89

    Article  CAS  PubMed  Google Scholar 

  • Unnithan AR, Park CH, Kim CS (2016) Nanoengineered bioactive 3D composite scaffold: a unique combination of graphene oxide and nanotopography for tissue engineering applications. Compos Part B 90:503–511

    Article  CAS  Google Scholar 

  • Valiev R (2002) Materials science: nanomaterial advantage. Nature 419(6910):887–889

    Article  CAS  PubMed  Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin-graphene oxide nanocomposites. Soft Matter 7(13):6159–6166

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Lu C, Li Y, Wu F, Zhao B, Dong X (2015) Green fabrication of porous silk fibroin/graphene oxide hybrid scaffolds for bone tissue engineering. RSC Adv 5(96):78660–78668

    Article  CAS  Google Scholar 

  • Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF (2015) Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev 84:208–221

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Ding G, Shi X, Guo W, Ni Z, Fu H, Fu Z (2016) A bioengineered drug-eluting scaffold accelerated cutaneous wound healing in diabetic mice. Colloids Surf B-Biointerfaces 145:226–231

    Article  CAS  PubMed  Google Scholar 

  • Yoon OJ, Sohn IY, Kim DJ, Lee N-E (2012) Enhancement of thermomechanical properties of poly (D, L-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromol Res 20(8):789–794

    Article  CAS  Google Scholar 

  • Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, Ma D, Ma G, Su Z (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16):4013–4021

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010a) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    Article  CAS  Google Scholar 

  • Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010b) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng L-S (2016a) The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zheng H, Liang S, Gao C (2016b) Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Tan A, Pastorin G, Ho HK (2013) Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 31(5):654–668

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun S-G (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40(7):4167–4185

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Motamed S, Thouas GA, Bernard CC, Li D, Parkington HC, Coleman HA, Finkelstein DI, Forsythe JS (2016a) Graphene functionalized scaffolds reduce the inflammatory response and supports endogenous neuroblast migration when implanted in the adult brain. PLoS One 11(3):e0151589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, Sun J (2016b) Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B-Biointerfaces 143:415–422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, Y.C. et al. (2018). Graphene-Functionalized Biomimetic Scaffolds for Tissue Regeneration. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_5

Download citation

Publish with us

Policies and ethics