Skip to main content

Agricultural Important Microorganisms: From Rhizosphere to Bioformulation as Biological Control Weapons for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Fungi are an integral part of the soil ecology. Rhizosphere holds foremost importance as a primitive site for microbial colonization and operation. A significant number of organic compounds including secretions, sloughed off cells, lysates and exudates are secreted by actively growing roots into the rhizosphere. As a matter of fact, the microbial activity in the rhizosphere is reckoned to be upraised and significantly distinctive in comparison to microbes existing in the bulk soil. Over the years agriculturally important microorganisms (AIM) have witnessed a significant utilization in a broad range of agroecosystems including both immanent and artificial circumstances in diverse applications ranging from nutrient supply, bioremediation, biocontrol and rehabilitation of degraded lands. The successful development of AIM in stressed ecosystem poses many challenges. The adverse effect to the environment due to indiscriminate use of chemical pesticides is of great concern, and hence development of alternate control strategies such as biological control as a substitute for chemicals or as a key component in integrated disease management system is gaining momentum. Biological control agents are usually target specific, and by using these agents in conjunction with fungicides, the level of fungicide applied can be reduced. The role of microorganisms to inhibit phytopathogen and possibility of bioformulation of next-generation products for agriculture market has been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-El-Moity TH, Shatla MN (1981) Biological control of white rot disease of onion (Sclerotium cepivorum) by Trichoderma harzianum. Phytopathol Z 100:29–35

    Article  Google Scholar 

  • Ahmed AS, Sanchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Ansari AR, Dhirendra P (1986) Rhizosphere and rhizoplane mycoflora of berley infected with Ustilago haordei. Indian Phytophatol 39(3):380–384

    Google Scholar 

  • Beagle-Ristaino JE, Papavizas GC (1985) Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopathology 75:560–564

    Article  Google Scholar 

  • Bliss DE (1951) The destruction of Armillaria mellea in citrus soils. Phytopathology 41:665–683

    CAS  Google Scholar 

  • Bolton B, Fredrickson JK, Elliott FE (1993) Microbial ecology of the rhizosphere. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, Inc, New York, pp 27–63

    Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots – the hidden half. Marcel Dekker Inc, New York, pp 641–649

    Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift – water efflux from upper roots improves effectiveness of water-uptake by deep roots. Oecologia 79:1–5

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty BN, Chakraborty U, Saha A (1995) Defence strategies of tea (Camellia sinensis) against fungal pathogens. In: Daniel M, Purkayastha RP (eds) Handbook of phytoalexin metabolism and action. Marcel Dekker Inc, New York, pp 485–502

    Google Scholar 

  • Chakraborty BN, Chakraborty U, Saha A, Sunar K, Dey PL (2010a) Evaluation of phosphate solubilizers from soils of North Bengal and their diversity analysis. World J Agri Sci 6(2):195–200

    CAS  Google Scholar 

  • Chakraborty BN, Chakraborty U, Saha A, Dey PL, Sunar K (2010b) Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Global J Biochem Biotechnol 5(1):55–61

    CAS  Google Scholar 

  • Chakraborty BN, Chakraborty U, Dey PL, Sunar K (2010c) Phylogenetic relationship of Trichoderma isolates of North Bengal based on sequence analysis of ITS region of rDNA. J Appl Sci Res 6(10):1477–1482

    Google Scholar 

  • Chet I (1987) Trichoderma- application, mode of action and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological-control of plant-pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Corke ATK, Hunter T (1979) Biocontrol of Nectria galligena infection of pruning wounds on apple shoots. J Hortic Sci 54:47–55

    Article  Google Scholar 

  • Cutler HG, Hill RA (1994) Natural fungicides and their delivery systems as alternatives to synthetics. In: Wilson CL, Wisniewski ME (eds) Biological control of post harvest disease. Theory and practice. CRC Press Inc, Boca Raton, pp 135–152

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:79–286

    Article  Google Scholar 

  • Delgado De Kallman L, Arbelaez Torres G (1990) Control of Sclerotinia clerotiorum (Lib) deary in Chrysanthemum and snapbean with different isolates of Trichoderma and with fungicides. Agronomia Colombiana 7:33–39

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol I. Academic, London

    Google Scholar 

  • Dubos B, Ricard JL (1974) Curative treatment of peach trees against silver leaf disease(Stereum purpureum) with Trichoderma viride preparations. Plant Dis Rep 58:147–150

    Google Scholar 

  • Elad Y, Chet I, Karan J (1980) Trichoderma harzianum: A biocontrol agent effective against Sclerorium rotfsii and Rhizoctonia solani. Phytopathology 70:119–121

    Article  Google Scholar 

  • Elad Y, Zvieli Y, Chet I (1986) Biological control of Macrophomina phaseolina (Tassi) Goid by Trichoderma harzianum. Crop Prot 5:288–292

    Article  Google Scholar 

  • Gopinath A, Shekhar SH and Prakash HS (1987) Colonization of Fusarium species in sorghum seeds and their significance. Indian Phytopathology 40:181–185.

    Google Scholar 

  • Grondona I, Perez de Algaba A, Monte E, Garcia-Acha I (1992) Biological control of sugarbeet diseases caused by Phoma betae: greenhouse and field tests. Brlerin Organisation Internationale de Lutte Biologique contre les Animaux et les Plantes Nuisiblesl Section Regionale Ouest Palearctique 15:39–41

    Google Scholar 

  • Hanhong B (2011) Trichoderma species as abiotic and biotic stress quenchers in plants. Res J Biotechnol 6(3):73–79

    Google Scholar 

  • Hawksworth DL, Sutton BC, Ainsworth GC (1983) Ainsworth and Bisby’s dictionary of fungi, 7th edn. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Hayes CK, Harman GE, Woo SL, Gullino ML, Lorito M (1993) Methods of electrophoretic karyotyping of filamentous fungi in the genus Trichoderma. Anal Biochem 209:176–182

    Article  CAS  PubMed  Google Scholar 

  • Hee R (1991) Selection and identification on antagonistic rhizobacteria for controlling soil borne diseases of vegetables. Res Rep Rural Dev. ADM (Suweon) 33 (Icrop prot): 10–19

    Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root mediated pH changes in the rhizosphere and their environment constraints – a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Boehm J (1999) Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. In: Webster RK (ed) Annual review of phytopathology, vol 37. Annual Reviews Inc, Palo Alto, pp 427–446

    Google Scholar 

  • Kallurmath RS, Rajasab AH (2000) Rhizosphere Mycoflora of onion. Indian J Mycol Plant Pathol 30(3):339–342

    Google Scholar 

  • Koike N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eu J Plant Pathol 107:523–533

    Article  CAS  Google Scholar 

  • Kumar NR, Arasu TV, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth promoting rhizobacteria, Pseudomonas fluorescens. Curr Sci 82(12):1463–1466

    CAS  Google Scholar 

  • Latunde-Dada AO (1993) Biological control of southern blight disease of tomato caused by Sclerotium rolfsii with simplified mycelial formulations of Trichoderma koningii. Plant Pathol 42:522–529

    Article  Google Scholar 

  • Lewis JA, Papvizas GC (1980) Integrated control of Rhizoctonia fruit rot of cucumber. Phytopathology 70:85–89

    Article  CAS  Google Scholar 

  • Lo CT, Nelson EB, Hayes CK, Harman GE (1998) G. E. Ecological studies of transformed Trichoderma harzianum strain 1295-22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129–136

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Marois JJ, Mitchell DJ, Sonoda RM (1981) Biological control of Fusarium crown rot of tomato under field conditions. Phyropathology 71:1257–1260

    Google Scholar 

  • Mathivannan N, Manibhushanrao K, Murugesan K (2006) Biological control of Plant pathogens. In: Anand N (ed) Recent trends in biochemical research. University of Madras, Chennai, pp 275–323

    Google Scholar 

  • Mathur K, Gurjar RBS, Jhamaria SL (2004) Rhizosphere Mycoflora of Chilli crop. Infected with Rhizoctonia solani. Indian J Mycol Plant Pathol 34(2):312–313

    Google Scholar 

  • Meyer RJ, Plaskowitz JS (1989) Scanning electron microscopy of conidia and conidial matrix of Trichoderma. Mycologia 81:312–317

    Article  Google Scholar 

  • Mishra PK, Mukhopadhyay AN, Fox RTV (2005) Integrated and biological control of gladiolus corm rot and wilt caused by Fusarium oxysporum f.sp. gladioli. Ann App Biol 137(3):361–364

    Article  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay AN (1992) Integrated control of Chickpea wilt complex by Trichoderma and chemical methods in India. Int J Pest Management 38(4):372–375

    Google Scholar 

  • Mukhopadhyay AN (2009) Challenges, changes and choices before Trichoderma based biopesticides. J Mycol Plant Pathol 39(3):542

    Google Scholar 

  • Munnecke DE (1972) Factors affecting the efficacy of fungicides in soil. Annu Rev Phytopathol 10:375–398

    Article  CAS  Google Scholar 

  • Pandey KK, Upadhyay JP (2000) Microbial population from rhizosphere and non-rhizosphere soil of pigeon pea. J Mycol Plant Pathol 30(1):7–10

    Google Scholar 

  • Papendick RI, Campbell GS (1975) Water potential in the rhizosphere and plant and methods of measurement and experimental control. In: Bruehl GW (ed) Biology and control of soil-born plant pathogens. American Phytopathological Society, St. Paul, pp 34–49

    Google Scholar 

  • Parveen S, Vijay RK (2004) Antagonism by Trichoderma viride against leaf blight pathogen of wheat. J Mycol Plant Pathol 34(2):220–222

    Google Scholar 

  • Seaman A (2003) Efficacy of OMRI-approved products for tomato foliar disease control. N Y State Integr Pest Manag Program Publ 129:164–167

    Google Scholar 

  • Shaik I, Nusrath M (1987) Vertical variation in the rhizosphere and rhizosphere mycoflora of Cajanus cajan with special reference to wilt diseases. Ind J Bot 10:126–129

    Google Scholar 

  • Sharma M, Gupta SK (2003) Ecofriendly methods for the management of root-rot and web blight of French bean. J Mycol Plant Pathol 33(3):345–361

    Google Scholar 

  • Sharma RN, Champawat RS, Gaur RB (2004) Efficacy of Rhizospheric and Rhizoplane microflora on spore germination in Fusarium oxysporum, the luciant of Jojoba wilt. J Mycol Plant Pathol 34(2):579–580

    Google Scholar 

  • Singh F, Hooda I, Sindhan GS (2004) Biological control of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J Mycol Plant Pathol 34(2):568–570

    Google Scholar 

  • Sivan A (1987) Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis 71:587–592

    Article  Google Scholar 

  • Sorensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, EMH W (eds) Modern soil microbiology. Marcel-Dekker, Inc, New York, pp 21–45

    Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998

    Article  Google Scholar 

  • Sutton JC, Peng G (1993) Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615–621

    Article  Google Scholar 

  • Tiwari RKS, Singh A (2004) Efficacy of fungicides of Rhizoctonia solani and Sclerotium rolfsii and their effect on Trichoderma harzianum and Rhizobium leguminosarum. J Mycol Plant Pathol 34(2):212–224

    Google Scholar 

  • Tronsmo A, Raa I (1977) Antagonistic action of Trichoderma pseudokoningii against the apple pathogen Botrytis cinerea. Phytopathol Z 89:216–220

    Article  Google Scholar 

  • Upadhyay JP, Mukhopadhyay AN (1986) Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugarbeet. Trop Pest Manag 32(21):5–220

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Review Trichoderma- plant pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, G., Dey, P., Dhiman, S. (2018). Agricultural Important Microorganisms: From Rhizosphere to Bioformulation as Biological Control Weapons for Sustainable Agriculture. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_9

Download citation

Publish with us

Policies and ethics