Skip to main content

Fungal Endophytes and Their Secondary Metabolites: Role in Sustainable Agriculture

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

In today’s constantly changing scenario, there is an increase in the use of novel and useful bioactive compounds for solving myriad of problems mankind faces, viz. appearance of drug-resistant bacteria, emergence of life-threatening viruses, increasing incidences of fungal infections in the world’s population and problems in eliminating food scarcity from some areas of the globe to help human populations. Fungal endophytes though not extensively studied yet are potent source of novel natural products useful in industry, agriculture and medicine. Each of the 300,000 plant species existing on earth is host to one or more endophytes. Till date about one tenth of an estimated one million plant species have been studied for fungal endophytes which are considerably diverse. This chapter deals with the range of bioactive metabolites produced by the fungal endophytes studied so far with emphasis on those useful in increasing food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akello J, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invertebr Pathol 96(1):34–42

    Article  PubMed  Google Scholar 

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27(11):1437–1441

    Article  Google Scholar 

  • Akutse KS, Maniania NK, KKM F, Van den Berg J, Ekesi S (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol 6(4):293–301

    Article  Google Scholar 

  • Arai T, Mikami Y, Fukushima K, Utsumi T, Yazawa K (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antibiot 26(3):157–161

    Article  CAS  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100(26):15649–15654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azeem M, Rajarao GK, Terenius O, Nordlander G, Nordenhem H, Nagahama K, Borg-Karlson AK (2013) A fungal metabolite masks the host plant odor for the pine weevil (Hylobius abietis). Fungal Ecol 13:103–111

    Article  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Bacon CW, Hills NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptation of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathologycal Society Press, St. Paul, pp 155–178

    Google Scholar 

  • Bacon CW, Porter JK, Robins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ball OJP, Miles CO, Prestidge RA (1997) Ergopeptide alkaloids and Neotyphodium lolli-mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera: Scarabaeidae). J Econ Entomol 90:1382–1391

    Article  CAS  Google Scholar 

  • Bandara WM, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31(5):645–650

    Article  PubMed  CAS  Google Scholar 

  • Benz F, Knüsel F, Nüesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlein W (1974) Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid-Antibioticum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine. Helv Chim Acta 57(8):2459–2477

    Article  CAS  Google Scholar 

  • Bills GF, Giacobbe RA, Lee SH, Peláez F, Tkacz JS (1992) Tremorgenic mycotoxins, paspalitrem A and C, from a tropical Phomopsis. Mycol Res 96(11):977–983

    Article  CAS  Google Scholar 

  • Bing LA, Lewis LC (1991) Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 20:1207–1211

    Article  Google Scholar 

  • Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4(1):110–114

    Article  Google Scholar 

  • Boyle R, McLean S, Foley W, Davies NW, Peacock EJ, Moore B (2001) Metabolites of dietary 1, 8-cineole in the male koala (Phascolarctos cinereus). Comp Biochem Physiol C: Toxicol Pharmacol 129(4):385–395

    CAS  Google Scholar 

  • Brady SF, Clardy J (2000) CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. J Nat Prod 63(10):1447–1448

    Article  PubMed  CAS  Google Scholar 

  • Breen JP (1992) Temperature and seasonal effects on expression of Acremonium endophyte-enhanced resistance to Schizaphis graminum (Homoptera: Aphididae). Environ Entomol 21:68–74

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96(4):281–286

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    Article  Google Scholar 

  • Caruso M, Colombo AL, Fedeli L, Pavesi A, Quaroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50(1):3–14

    CAS  Google Scholar 

  • Castrillo LA, Griggs MH, Ranger CM, Reding ME, Vandenberg JD (2011) Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biol Control 58(2):121–126

    Article  Google Scholar 

  • Chapela IH, Petrini O, Hagmann L (1991) Monolignol glucosides as specific recognition messengers in fungus-plant symbioses. Physiol Mol Plant Pathol 39(4):289–298

    Article  CAS  Google Scholar 

  • Cherry AJ, Lomer CJ, Djegui D, Schulthess F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl 44(3):301–327

    Article  Google Scholar 

  • Cherry AJ, Banito A, Djegui D, Lomer C (2004) Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. Int J Pest Manag 50(1):67–73

    Article  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs des champignons: chimie et rôle dans les interactions biotiques-une revue. Cryptogam Mycol 26(4):299–364

    Google Scholar 

  • Clay K (1988a) Fungal endophytes of grasses. A defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K (1988b) Fungal endophytes of grasses. Their potential as biocontrol agents. Mycol Res 92:1–12

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379(1–2):261–274

    Article  CAS  Google Scholar 

  • Crous PW, Braun U, Groenewald JZ (2007) Mycosphaerella is polyphyletic. Stud Mycol 58:1–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39(7):840–859

    Article  PubMed  CAS  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43(3):237–256

    Article  CAS  Google Scholar 

  • Deckert RJ, Melville LH, Peterson RL (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinus strobus. Mycol Res 105(8):991–997

    Article  Google Scholar 

  • Demain AL (1980) Microbial production of primary metabolites. Naturwissenschaften 67(12):582–587

    Article  PubMed  CAS  Google Scholar 

  • Dew RK, Boissonneault GA, Gay N, Boling JA, Cross RJ, Cohen DA (1990) The effect of the endophyte (Acremonium coenophialum) and associated toxin (s) of tall fescue on serum titer response to immunization and spleen cell flow cytometry analysis and response to mitogens. Vet Immunol Immunopathol 26(3):285–295

    Article  PubMed  CAS  Google Scholar 

  • Dourado MN, Neves AAC, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic methylobacterium spp. Hindawi Publishing Corporation. BioMed Res Int 2015:909016 19 pages

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    Article  PubMed  CAS  Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono-and dicotyledonous plants. Plant Cell Physiol 51(10):1674–1693

    Article  PubMed  CAS  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42(2):360–368

    Article  PubMed  Google Scholar 

  • Fialho MB, Ferreira LFR, Monteiro RTR, Pascholati SF (2011) Antimicrobial volatile organic compounds affect morphogenesis-related enzymes in Guignardia citricarpa, causal agent of citrus black spot. Biocontrol Sci Tech 21(7):797–807

    Article  Google Scholar 

  • Findlay JA, Li G, Penner PE, Miller JD (1995a) Novel diterpenoid insect toxins from a conifer endophyte. J Nat Prod 58(2):197–200

    Article  CAS  Google Scholar 

  • Findlay JA, Buthelezi S, Lavoie R, Peña-Rodriguez L, Miller JD (1995b) Bioactive isocoumarins and related metabolites from conifer endophytes. J Patural Prod 58(11):1759–1766

    Article  CAS  Google Scholar 

  • Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6(1):269–275

    Article  Google Scholar 

  • Findlay JA, Buthelezi S, Li GQ, Seveck M, Miller JD (1997) Insect toxins from an endophytic fungus from wintergreen. J Nat Prod 60:1214–1215

    Article  CAS  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavors. In: Esser K, Hofrichter M (eds) The mycota X: industrial applications. Springer, Heidelberg, pp 249–268

    Google Scholar 

  • Georg GI, Chen TT, Ojima I, Vyas DM (1994) Taxane anticancer agents. Basic science current status, American Chemical Society. Symposium Series no. 583. American Chemical Society, Washington, DC

    Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Golo PS, Gardner DR, Grilley MM, Takemoto JY, Krasnoff SB, Pires MS, Roberts DW (2014) Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS One 9(8):e104946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Götz M, Dammann U, Schulz B, Boyle C (2000) Influence of colonization of the apoplast by endophytic fungi on the nutrient status of the host plant. Abstracts, third international congress on symbiosis, Marburg, p 78

    Google Scholar 

  • Greenfield M, Pareja R, Ortiz V, María I, Jiménez G, Fernando E, Vega, Parsa S (2015) A novel method to scale up fungal endophyte isolations. Biocontrol Sci Tech 25(10):1208–1212

    Article  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(12):3814–3829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147(3):617–630

    Article  CAS  PubMed  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467

    Article  PubMed  CAS  Google Scholar 

  • Halmschlager E, Butin H, Donaubauer E (1993) Endophytic fungi in leaves and twigs of Quercus petraea. Eur J For Pathol 23(1):51–63

    Article  Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59(14):2471–2476

    Article  CAS  Google Scholar 

  • Herrera-Carillo Z, Torres MS, Singh AP, Vorsa N, Gianfagna T, Meyer W, White Jr JF (2009) Phenolic, flavonoid and antioxidant profiling for cool-season grasses with and without endophyte. In: Proceedings of the 18th annual rutgers turfgrass symposium, vol 12, January 2009

    Google Scholar 

  • Hofer P, Vermette P, Groleau D (2011) Introducing a new bioengineered bug: Methylobacterium extorquens tuned as a microbial bioplastic factory. Bioeng Bug 2(2):71–79

    Article  Google Scholar 

  • Holighaus G, Weißbecker B, von Fragstein M, Schütz S (2014) Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore. Chemoecology 24(2):57–66

    Article  CAS  Google Scholar 

  • Horakova K, Betina V (1976) Cytotoxic activity of macrocyclic metabolites from fungi. Neoplasma 24(1):21–27

    Google Scholar 

  • Horn WS, Simmonds MS, Schwartz RE, Blaney WM (1996) Variation in production of Phomodiol and Phomopsolide B by Phomopsis spp. Mycologia 88:588–595

    Article  CAS  Google Scholar 

  • Huang Z, Wang B, Eaves DH, Shikany JM, Pace RD (2007) Phenolic compound profile of selected vegetables frequently consumed by African Americans in the Southeast United States. Food Chem 103(4):1395–1402

    Article  CAS  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26

    Article  Google Scholar 

  • Inamdar AA, Moore JC, Cohen RI, Bennett JW (2012) A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-o1 in human embryonic stem cells. Mycopathologia 173:13–20

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Hayashi K, Hida T, Yamamoto Y, Nozaki Y (2000) TAN-1813, a novel Ras-farnesyltransferase inhibitor produced by Phoma sp. J Antibiot 53(8):765–778

    Article  CAS  Google Scholar 

  • Ju Y, Sacalis JN, Still CC (1998) Bioactive flavonoids from endophyte-infected blue grass (Poa ampla). J Agric Food Chem 46:3785–3788

    Article  CAS  Google Scholar 

  • Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140(2):295–310

    Article  PubMed  Google Scholar 

  • Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science 311:806–807

    Article  PubMed  CAS  Google Scholar 

  • Kaul S, Sharma T, Dhar MK (2016) Omics tools for better understanding the plant–endophyte interactions. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00955

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73(1):35–37

    Article  CAS  Google Scholar 

  • Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite–what decides? Curr Opin Plant Biol 9(4):358–363

    Article  PubMed  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  PubMed  CAS  Google Scholar 

  • Koshino H, Terada SI, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1988) Three phenolic acid derivatives from stromata of Epichloë typhina on Phleum pratense. Phytochemistry 27(5):1333–1338

    Article  CAS  Google Scholar 

  • Koshino T, Yoshihara S, Sakamura T, Shimanuki T, Sato A, Tajimi (1989) A ring B aromatic sterol from stromata of Epichloë typhina. Phytochemistry 28:771–772

    Article  CAS  Google Scholar 

  • Koshino H, Yoshihara T, Okuno M, Sakamura S, Tajimi A, Shimanuki T (1992) Gamahonolides A, B, and gamahorin, novel antifungal compounds from stromata of Epichloë typhina on Phleum pratense. Biosci Biotechnol Biochem 56(7):1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Michel A, Flörke U, Aust HJ, Draeger S, Schulz B (1994) Biologically active metabolites from fungi, 5. Palmarumycins C1–C16 from Coniothyrium sp.: isolation, structure elucidation, and biological activity. Eur J Org Chem 1994(11):1099–1108

    Google Scholar 

  • Krohn K, Michel A, Romer E, Florke U, Aust HJ, Draeger S, Schulz B (1996) Biologically active secondary metabolites from fungi 6: phomosines AC. Two new biaryl ethers and one new arylbenzyl ether from Phomopsis sp. Nat Prod Lett 8:43–48

    Article  CAS  Google Scholar 

  • Krohn K, Bahramsari R, Flörke U, Ludewig K, Kliche-Spory C, Michel A, Antus S (1997) Dihydroisocoumarins from fungi: isolation, structure elucidation, circular dichroism and biological activity. Phytochemistry 45(2):313–320

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Florke U, John M, Root N, Steingrover K, Aust HJ, Draeger S, Schulz B, Antus S, Simonyi M, Zsila F (2001) Biologically active metabolites from fungi part 16. New preussomerins J, K and L from an endophytic fungus: structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron 57:4343–4348

    Article  CAS  Google Scholar 

  • Kumar S, Kaushik N (2012) Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev 11(4):507–522

    Article  CAS  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:6

    Google Scholar 

  • Lee JC, Lobokovsky NB, Strobel GA, Clardy JC (1995) Subglutinol A and B: immunosuppresive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106(4):1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Leuchtmann A (1992) Systematics, distribution, and host specificity of grass endophytes. Nat Toxins 1(3):150–162

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142(8):2223–2226

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Sidhu RS, Ford EJ, Long DM, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus—Periconia sp from Torreya grandifolia. J Ind Microbiol Biotech 20:259–264

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72(24):6069–6078

    Article  CAS  Google Scholar 

  • Lingham RB, Silverman KC, Bills GF, Cascales C, Sanchez M, Jenkins RG, Mochales S (1993) Chaetomella acutiseta produces chaetomellic acids A and B which are reversible inhibitors of farnesyl-protien transferase. Appl Microbiol Biotechnol 40(2–3):370–374

    PubMed  CAS  Google Scholar 

  • Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88(3):277–282

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151(1):67–73

    Article  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36(10):1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Madelin MF (1963) Diseases caused by hyphomycetous fungi. In: Steinhaus E (ed) Insect pathology. An advanced treatise, vol 2. Academic, New York, pp 233–272

    Chapter  Google Scholar 

  • Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM, Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 146(8):2079–2089

    Article  PubMed  CAS  Google Scholar 

  • Miller JD (2001) Factors that affect the occurrence of fumonisin. Environ Health Perspect 109(Suppl 2):321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76(2):342–351

    Article  PubMed  CAS  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98(4):380–386

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    Article  PubMed  CAS  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9(1):e86882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngwene B, Boukail S, Söllner L, Franken P, Andrade-Linares DR (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405(1–2):231–241

    Article  CAS  Google Scholar 

  • O’Hanlon KA, Knorr K, Jørgensen LN, Nicolaisen M, Boelt B (2012) Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biol Control 63(2):69–78

    Article  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4(3):357–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Sanfuentes E, Rodriguez J (2008) Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers 33(7):77–86

    Google Scholar 

  • Pagans E, Font X, Sánchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131(1):179–186

    Article  PubMed  CAS  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3(4):338–346

    Article  Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120(5):783–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson CG, Potter DA, Fannin FF (1992) Feeding deterrency of alkaloids from endophyte-infected grasses to Japanese beetle grubs. Entomol Exp Appl 61:285

    Article  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Peipp H, Sonnenbichler J (1992) Secondary fungal metabolites and their biological activities, II. Occurrence of antibiotic compounds in cultures of Armillaria ostoyae growing in the presence of an antagonistic fungus or host plant cells. Biol Chem Hoppe Seyler 373(2):675–684

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Dammeyer B, Schulz B (1998a) Endophyte-host interactions. I. Plant defense reactions to endophytic and pathogenic fungi. Symbiosis 25(1–3):193–211

    Google Scholar 

  • Peters S, Draeger S, Aust HJ, Schulz B (1998b) Interactions in dual cultures of endophytic fungi with host and nonhost plant calli. Mycologia 90:360–367

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Pimenta RS, Moreira da Silva JF, Buyer JS, Janisiewicz WJ (2012) Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola. J Food Prot 75(10):1883–1889

    Article  PubMed  CAS  Google Scholar 

  • Pinto C, Rodrigues LS, Azevedo JL, Pereira JO, Carneiro Vieira ML, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147(3):609–615

    Article  CAS  Google Scholar 

  • Powell RG, Petroski RJ (1992) Alkaloid toxins in endophyte-infected grasses. Nat Toxins 1(3):163–170

    Article  PubMed  CAS  Google Scholar 

  • Prestidge RA, Gallagher RT (1988) Endophyte conifers resistance to ryegrass: argentine stem weevil larval studies. Ecol Entomol 13:429–435

    Article  Google Scholar 

  • Pulici M, Sugawara F, Koshino H, Uzawa J, Yoshida S, Lobkovsky E, Clardy J (1996a) Pestalotiopsins A and B: new caryophyllenes from an endophytic fungus of Taxus brevifolia. J Org Chem 61(6):2122–2124

    Article  CAS  Google Scholar 

  • Pulici M, Sugawara F, Koshino H, Uzawa J, Yoshida S, Lobkovsky E, Clardy J (1996b) A new isodrimeninol from Pestalotiopsis sp. J Nat Prod 59(1):47–48

    Article  CAS  Google Scholar 

  • Pulici M, Sugawara F, Koshino H, Okada G, Esumi Y, Uzawa J, Yoshida S (1997) Metabolites of Pestalotiopsis spp., endophytic fungi of Taxus brevifolia. Phytochemistry 46(2):313–319

    Article  CAS  Google Scholar 

  • Qiu DY, Huang MJ, Fang XH, Zhu C, Zhu ZQ (1994) Isolation of an endophytic fungus associated with Taxus yunnanensis. Acta Mycol Sin 13:314

    Google Scholar 

  • Quesada-Moraga E, Landa BB, Muñoz-Ledesma J, Jiménez-Diáz RM, Santiago-Alvarez C (2006) Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia 161(5):323–329

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Agarkar G (2014) Plant–fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42(3):428–438

    PubMed  Google Scholar 

  • Reddy NP, Khan APA, Devi UK, Sharma HC, Reineke A (2009) Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae). J Asia Pac Entomol 12(4):221–226

    Article  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151(3):705–716

    Article  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581

    Article  PubMed  CAS  Google Scholar 

  • Richardson MD, Chapman GW, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32(4):1060–1061

    Article  CAS  Google Scholar 

  • Riedell WE, Kieckhefer RE, Petroski RJ, Powell RG (1991) Naturally-occurring and synthetic loline alkaloid derivatives: insect feeding behaviour modification and toxicity. J Entomol Sci 26:122–129

    Article  CAS  Google Scholar 

  • Rocha AC, Garcia D, Uetanabaro AP, Carneiro RT, Araújo IS, Mattos CR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47(1):75–84

    Article  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Rowan DD, Latch GCM (1994) In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 169–183

    Google Scholar 

  • Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357

    Article  PubMed  CAS  Google Scholar 

  • Rudgers JA, Strauss SY (2004) A selection mosaic in the facultative mutualism between ants and wild cotton. Proc R Soc Lond B Biol Sci 271(1556):2481–2488

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343

    Article  Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81(5):430–438

    Article  PubMed  Google Scholar 

  • Schardl CL, Liu JS, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178(1):27–41

    Article  CAS  Google Scholar 

  • Schiestl FP, Steinebrunner F, Schulz C, Von Reuss S, Francke W, Weymuth C, Leuchtmann A (2006) Evolution of ‘pollinator’-attracting signals in fungi. Biol Lett 2(3):401–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56(7):1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99(8):1007–1015

    Article  CAS  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites** Paper presented at the British Mycological Society symposium on Fungal Bioactive Compounds, held at the University of Wales Swansea on 22–27 April 2001. Mycol Res 106(9)996–1004

    Google Scholar 

  • Selosse MA, Dubois MP, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113(10):1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Singh MP, Janso JE, Luckman SW, Brady SF, Clardy J, Greenstein M, Maiese WM (2000) Biological activity of guanacastepene, a novel diterpenoid antibiotic produced by an unidentified fungus CR115. J Antibiot 53(3):256–261

    Article  CAS  Google Scholar 

  • Small CLN, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  PubMed  CAS  Google Scholar 

  • St Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci 93(13):6349–6354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science-New York Then Washington 260:214–214

    Article  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58(9):1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Stierle AA, Stierle DB, Bugni T (1999) Sequoiatones A and B: novel antitumor metabolites isolated from a redwood endophyte. J Org Chem 64(15):5479–5484

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 4:491–502

    Article  CAS  Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142(2):435–440

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128(1):97–108

    Article  CAS  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Su M, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Article  Google Scholar 

  • Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71(8):1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47(1):85–95

    Article  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  PubMed  CAS  Google Scholar 

  • Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6(2):024001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Torres MS, Singh AP, Shah S, Herrera-Carrillo Z, Gianfagna T, White Jr JF, Vorsa N (2009) LC–MS–MS identification and quantification of phenolics in symbiotic tall fescue. In: Proceedings of the 18th Annual Rutgers Turfgrass Symposium, vol 12. New Brunswick, New Jersey: Rutgers University, Center for Interdisciplinary Studies in Turfgrass Science, January 2009

    Google Scholar 

  • Traber R, Keller-Juslén C, Loosli HR, Kuhn M, Von Wartburg A (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D. Helv Chim Acta 62(4):1252–1267

    Article  CAS  Google Scholar 

  • Tudzynski B (1997) Fungal phytohormones in pathogenic and mutualistic associations. In: Plant relationships. Springer, Berlin/Heidelberg, pp 167–184

    Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal phytohormones. In: Industrial applications. Springer, Berlin/Heidelberg, pp 183–211

    Google Scholar 

  • Unterseher M, Schnittler M (2010) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)–different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113(5):645–654

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3(3):122–138

    Article  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16–22

    Article  PubMed  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    Article  PubMed  CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemia and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9): 2325–2327

    Google Scholar 

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol Control 74:82–88

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  PubMed  CAS  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138(4):440–446

    Article  PubMed  CAS  Google Scholar 

  • White Jr JF, Reddy PV, Bacon CW (2000) Biotrophic endophytes of grasses: a systematic appraisal. In: Microbial endophytes. Marcel Dekker, New York, pp 49–62

    Google Scholar 

  • Yang X, Strobel G, Stierle A, Hess WM, Lee J, Clardy J (1994) A fungal endophyte-tree relationship: Phoma sp. in Taxus wallichiana. Plant Sci 102(1):1–9

    Article  CAS  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63(11):1529–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors Sharda Sahu and Anil Prakash gratefully acknowledge the financial support provided by DBT-Builder Programme, Barkatullah University, Bhopal. Manvika Sahgal acknowledges the financial assistance provided by ICAR-GOI and Director Experiment Station, GBPUAT, Pantnagar-India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anamika, Joshi, S., Sahgal, M., Sahu, S., Prakash, A. (2018). Fungal Endophytes and Their Secondary Metabolites: Role in Sustainable Agriculture. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_8

Download citation

Publish with us

Policies and ethics