Skip to main content

Bioactive Potential of Nonconventional Edible Wild Mushroom Amanita

  • Chapter
  • First Online:

Abstract

This study evaluated the bioactive components and antioxidant potential of uncooked and cooked tender edible mushroom Amanita sp. This mushroom is common in lateritic scrub jungles during the early monsoon season of the southwest coast of India and a delicacy for tribals and native people. Nine bioactive components of tender Amanita sp. (total phenolics, tannins, flavonoids, vitamin C, phytic acid, lycopene, β-carotene, trypsin inhibition and haemagglutinin) showed higher quantities in uncooked than in cooked samples, so also the five antioxidant activities (total antioxidant activity, ferrous ion-chelating capacity, reducing power and DPPH and ABTS radical-scavenging activities). It was devoid of L-DOPA, and there was no significant difference in tannins, flavonoids and phytic acid contents between uncooked and cooked samples. Bioactive principles as well as antioxidant activities were comparable or higher than many edible Amanita spp. In principal component analysis irrespective of thermal processing, tannin content and trypsin inhibition activity were clustered with total antioxidant activity, reducing power and DPPH radical-scavenging activity. Owing to the potential nutritional and antioxidant properties, Amanita sp. and its ectomycorrhizal native host tree species deserve conservation priorities. Future research needs to focus on this nonconventional wild edible source for nutraceutical potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adedapo AA, Jimoh FO, Afolayan AJ, Masika PJ (2008) Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complement Altern Med 8:1–7

    Article  CAS  Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci Technol 20:201–212

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fifty years of drug discovery from fungi – review. Fungal Divers 50:3–19

    Article  Google Scholar 

  • Arora B, Singh M (2014) Effect of cooking on antioxidant activity and phenolic content of various species of edible mushrooms of India. In: Proceedings of 8th international conference on mushroom biology and mushroom products, New Delhi, pp 576–581

    Google Scholar 

  • Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090

    Article  CAS  Google Scholar 

  • Barros L, Ferreira MJ, Queiros B, Ferreira ICFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419

    Article  CAS  Google Scholar 

  • Boa E (2004) Wild edible fungi a global overview of their use and importance to people. Food and Agricultural Organization, Rome

    Google Scholar 

  • Burns R (1971) Methods for estimation of tannins in grain sorghum. Agron J 63:511–512

    Article  CAS  Google Scholar 

  • Buyck B (1994) Ubwoba: les champignons comestibles de I’Ouest du Burundi. Administration Generale de la Cooperation au Developpement Bruxelles Publ # 34

    Google Scholar 

  • Champ MM (2002) Non nutrient bioactive substances of pulses. Br J Nutr 88:307–319

    Article  CAS  Google Scholar 

  • Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Cheung LM, Cheung PCK (2005) Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89:403–409

    Article  CAS  Google Scholar 

  • De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40

    Article  Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK, Cornforth DP (1982) Effects of dehulling on phytic acid, polyphenols and enzyme –inhibitors of dry beans (Phaseolus vulgaris L). J Food Sci 47:1846–1850

    Article  CAS  Google Scholar 

  • Doğan HH (2013) Evaluation of phenolic compounds, antioxidant activities and fatty acid composition of Amanita ovoidea (Bull.) Link. in Turkey. J Food Compos Anal 31:87–93

    Article  CAS  Google Scholar 

  • Farook AV, Khan SS, Manimohan P (2013) A checklist of agarics (gilled mushrooms) of Kerala state, India. Mycosphere 4:97–131

    Article  Google Scholar 

  • Fujii Y, Shibuya T, Yasuda T (1991) L 3,4-dihydroxyphenylalanine as an allelochemical from Mucuna pruriens (L.) DC var utilis. Agric Biol Chem 55:617–618

    CAS  Google Scholar 

  • Ghate SD, Sridhar KR (2016) Spatiotemporal diversity of macrofungi in the coastal sand dunes of Southwestern India. Mycosphere 7:458–472

    Article  Google Scholar 

  • Ghate SD, Sridhar KR, Karun NC (2014) Macrofungi on the coastal sand dunes of South-Western India. Mycosphere 5:144–151

    Article  Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food antioxidants. Elsevier Applied Science, London, pp 1–18

    Google Scholar 

  • Grases F, Sanchis P, Perello J, Isern B, Prieto RM, Fernandez-Palomeque C, Saus C (2008) Phytate reduces age-related cardiovascular calcification. Front Biosci 13:7115–7122

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Murcia HA, Chico S, Aruoma OI (1995) Free radicals and antioxidants in food an in vivo: what they do and how they work. CRC Crit Rev Food Sci Nutr 35:7–20

    Article  CAS  Google Scholar 

  • Härkönen M, Saarimäki T, Mwasumbi L (1994) Tanzania mushrooms and their uses 4. Some reddish edible and poisonous Amanita species Karstenia, 34:47–60

    Google Scholar 

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food application. Curr Opin Biotechnol 18:163–169

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (2002) L-DOPA: from a biologically inactive amino acid to a successful therapeutic agent. Amino Acids 23:65–70

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Chen W, Weng YM, Tseng CY (2003) Chemical composition, physical properties and antioxidant activities of yam flours as affected by different drying methods. Food Chem 83:85–92

    Article  CAS  Google Scholar 

  • Hyde KD, Bahkali AH, Moslem MA (2010) Fungi – an unusual source for cosmetics. Fungal Divers 43:1–9

    Article  Google Scholar 

  • Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products, a collaborative analysis of an improved procedure. Cereal Chem 51:376–382

    CAS  Google Scholar 

  • Karun NC, Sridhar KR (2014) A preliminary study on macrofungal diversity in an arboratum and three plantations of the southwest coast of India. Curr Res Environ Appl Mycol 4:173–187

    Article  Google Scholar 

  • Karun NC, Sridhar KR (2016) Spatial and temporal diversity of macrofungi in the Western Ghat forests of India. Appl Ecol Environ Res 14:1–21

    Article  Google Scholar 

  • Karun NC, Sridhar KR, Niveditha VR, Ghate SD (2016) Bioactive potential of two wild edible mushrooms of the Western Ghats of India. In: Watson RR, Preedy VR (eds) Fruits, vegetables, and herbs: bioactive foods in health promotion. Elsevier, Oxford, pp 344–362

    Google Scholar 

  • Knekt P, Ritz J, Pereira MA, O'Reilly EJ, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Liu S, Pietinen P (2004) Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr 80:1508–1520

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959

    Article  CAS  Google Scholar 

  • Leopoldini M, Russo N, Chiodo S, Toscano M (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Aric Food Chem 54:6343–6351

    Article  CAS  Google Scholar 

  • Liener IE, Kakade ML (1980) Protease inhibitors. In: Liener IE (ed) Toxic-constituents of plant foodstuffs, 2nd edn. Academic, New York

    Google Scholar 

  • Lo KM, Cheung PCK (2005) Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var alba. Food Chem 89:533–539

    Article  CAS  Google Scholar 

  • Manzi P, Pizzoferrato L (2000) Beta-glucans in edible mushrooms. Food Chem 68:315–318

    Article  CAS  Google Scholar 

  • Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118

    Article  CAS  Google Scholar 

  • Miller OK Jr, Hemmes DE, Wong G (1996) Amanita marmorata subsp Myrtacearum – a new subspecies in Amanita section Phalloideae from Hawaii. Mycologia 88:140–145

    Article  Google Scholar 

  • Mohanan C (2011) Macrofungi of Kerala. Handbook # 27. Kerala Forest Research Institute, Peechi, India

    Google Scholar 

  • Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish 39:925–928

    Article  CAS  Google Scholar 

  • Occenã IV, Majica E-RE, Merca FE (2007) Isolation of partial characterization of a lectin from the seeds of Artocarpus camansi Blanco. Asian J Plant Sci 6:757–764

    Article  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jap J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Paloi S, Acharya K (2013) Antioxidant activities and bioactive compounds of polyphenol rich extract from Amanita vaginata (Bull.) Lam. Int J Pharm Tech Res 5:1645–1654

    CAS  Google Scholar 

  • Pavithra M, Greeshma AA, Karun NC, Sridhar KR (2015) Observations on the Astraeus spp. of Southwestern India. Mycosphere 6:421–432

    Google Scholar 

  • Pavithra M, Sridhar KR, Greeshma AA, Tomita-Yokotani K (2016) Bioactive potential of the wild mushroom Astraeus hygrometricus in South-West India. Mycology 7:191–202. https://doi.org/10.1080/21501203.2016.1260663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  CAS  PubMed  Google Scholar 

  • Randhir R, Kwon YI, Shetty K (2008) Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innov Food Sci Emerg Technol 9:355–364

    Article  CAS  Google Scholar 

  • Roe JH (1954) Chemical determination of ascorbic, dehydroascorbic and diketogluconic acids. In: Glick D (ed) Methods of biochemical analysis, vol 1. Inter Science Publishers, New York, pp 115–139

    Google Scholar 

  • Rosset J, Bärlocher F, Oertli JJ (1982) Decomposition of conifer needles and deciduous leaves in two black Forest and two Swiss Jura streams. Int Rev Gesamten Hydrobiol 67:695–711

    CAS  Google Scholar 

  • Sánchez-Ramírez S, Tulloss RE, Amalfi M, Moncalvo JM (2015) Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae). J Biogeogr 42:351–363

    Article  Google Scholar 

  • Sanmee R, Tulloss RE, Lumyong P, Dell B, Lumyong S (2008) Studies on Amanita (Basidiomycetes: Amanitaceae) in Northern Thailand. Fungal Divers 32:97–123

    Google Scholar 

  • Sathe SK, Deshpande SS, Reddy NR, Goll DE, Salunkhe DK (1983) Effects of germination on proteins, raffinose oligosaccharides and antinutritional factors in the Great Northern Beans (Phaseolus vulgaris L.). J Food Sci 48:1796–1800

    Article  CAS  Google Scholar 

  • Sekita A, Okazaki Y, Katayama T (2016) Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high-sucrose diet. Nutrition 32:720–722

    Article  CAS  PubMed  Google Scholar 

  • Senthilarasu G (2014) Diversity of agarics (gilled mushrooms) of Maharashtra, India. Curr Res Environ Appl Mycol 4:58–78

    Article  Google Scholar 

  • Senthilarasu G, Kumaresan V (2016) Diversity of agaric mycota of Western Ghats of Karnataka, India. Curr Res Environ Appl Mycol 6:75–101

    Article  Google Scholar 

  • Sharma SK, Gautam N (2015) Chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species. BioMed Res Int. https://doi.org/10.1155/2015/346508

  • Singh RP, Murthy CKN, Jayaprakasha GK (2002) Studies on antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro methods. J Agric Food Chem 50:81–86

    Article  CAS  PubMed  Google Scholar 

  • Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM, Akkouh O, Tzi BN (2014) Lectins from edible mushrooms. Molecules 20:446–469

    Article  CAS  PubMed  Google Scholar 

  • Soares SR, Carvalho-Oliveira R, Ramos-Sanchez E, Catanozi S, Silva LF, Mauad T, Gidlund M, Goto H, Garcia ML (2009) Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice. Atherosclerosis 207:368–373

    Article  CAS  PubMed  Google Scholar 

  • StatSoft (2008) Statistica Version # 8. StatSoft, Tulsa

    Google Scholar 

  • Taofiq O, González-Paramás AM, Martins A, Barreiro MF, Ferreira ICFR (2016) Mushrooms extracts and compounds of cosmetics, cosmeceuticals and nutricosmetics – a review. Ind Crop Prod 90:38–48

    Article  CAS  Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099

    Article  Google Scholar 

  • Thatoi H, Singdevsachan SK (2014) Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. Afr J Biotechnol 13:523–545

    Article  CAS  Google Scholar 

  • Tripathy SS, Rajoriya A, Gupta N (2014) Nutritive properties and antioxidative activity of Amanita caesarea and A. loosii wild edible mushrooms from Odisha. Int J Inno Drug Disc 4:124–129

    Google Scholar 

  • Tulloss RE (2005) Amanita – distribution in the Americas, with comparison to eastern and southern Asia and notes on spore character variation with latitude and ecology. Mycotaxon 93:189–231

    Google Scholar 

  • Vikineswary S, Chang ST (2013) Edible and medicinal mushrooms for sub-health intervention and prevention of lifestyle diseases. Tech Monitor (July–September):33–43

    Google Scholar 

  • Wong SP, Leong LP, Koh JHW (2006) Antioxidant activities of aqueous extracts of selected plants. Food Chem 99:775–783

    Article  CAS  Google Scholar 

  • Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan-value-added products from mushroom waste. J Agric Food Chem 29:7905–7910

    Article  CAS  Google Scholar 

  • Xu X, Wu Y, Chen H (2011) Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chem 127:74–79

    Article  CAS  Google Scholar 

  • Ye Z, Song H (2008) Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Card Prev Rehab 15:26–34

    Article  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang ZY, Zhang Z, Wang X (2011) Purified Auricularia auricula-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydr Polym 84:638–648

    Article  CAS  Google Scholar 

  • Zhang P, Tang LP, Cai Q, Xu JX (2015) A review on the diversity, phylogeography and population genetics of Amanita mushrooms. Mycology 6:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Mangalore University in accomplishing this study in the Department of Biosciences. GAA greatly acknowledges the award of INSPIRE Fellowship, Department of Science and Technology, New Delhi, Government of India. KRS is grateful to the University Grants Commission, New Delhi, India, for the award of UGC-BSR Faculty Fellowship during the tenure of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greeshma, A.A., Sridhar, K.R., Pavithra, M., Tomita-Yokotani, K. (2018). Bioactive Potential of Nonconventional Edible Wild Mushroom Amanita . In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_37

Download citation

Publish with us

Policies and ethics