Skip to main content

Abstract

Marine fungi are an ecologically unified group but are taxonomically diverse. They occur on wood, sediments, algae (seaweeds), dead corals, calcareous tubes of mollusks, decaying leaves, seedlings, prop roots and pneumatophores of mangroves, intertidal grasses, and living animals. Fungi that develop reproductive propagules on natural substrata (plant or animal) are considered as obligate marine fungi, and those that are isolated from soil or water samples of marine environments which sprout in the agar plates under artificial conditions are considered as facultative marine fungi. Many in the first group have special structures such as sheaths and appendages on their propagules (spores and conidia) which help them in attaching to different substrata. The fungi of the second group are predominantly comprised of aspergilli/penicilli. Marine fungi play an important role in the nutrient regeneration cycles by degrading and decaying the dead organic matter; thus they are involved in the production of organic detritus that supports a large animal community. Besides the wood borers and bacteria, the fungi are major decomposers of woody and herbaceous substrata that enter into the marine ecosystems. These aspects have been reviewed in this chapter. Also in recent times various biotechnological applications of marine fungi have been studied including their enzymatic potential and secondary metabolite production, which also have been discussed. Finally, recommendations have been provided for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff A, Klemke C, König GM, Wright AD (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708

    Article  PubMed  CAS  Google Scholar 

  • Almeida C, Kehraus S, Prudêncio M, König GM (2011) Marilones A–C, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 7:1636–1642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr Sci 87:1431

    Google Scholar 

  • Ashton EC, Hogarth PJ, Ormond R (1999) Breakdown of mangrove leaf litter in a managed mangrove forest in peninsular Malaysia. In: Diversity and function in mangrove ecosystems. Springer, Dordrecht, pp 77–88

    Chapter  Google Scholar 

  • Benner R, Hodson RE (1985) Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar Ecol Prog Ser 23:221

    Article  CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Koch L, Thu KM, Rahamim Y, Aluma Y, Ilan M, Yarden O, Carmeli S (2011) Novel terpenoids of the fungus aspergillus insuetus isolated from the Mediterranean sponge Psammocinia sp. collected along the coast of Israel. Bioorg Med Chem 19:6587–6593

    Article  PubMed  CAS  Google Scholar 

  • Cundell AM, Brown MS, Stanford R, Mitchell R (1979) Microbial degradation of Rhizophora mangle leaves immersed in the sea. Estuar Coast Mar Sci 9:281IN1–286IN4

    Article  Google Scholar 

  • Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, Gütschow M, Josten M, Sahl H-G, König GM (2011) Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem 9:802–808

    Article  PubMed  CAS  Google Scholar 

  • Fell JW, Master IM (1973) Fungi associated with the degradation of mangrove (Rhizophora mangle L.) leaves in South Florida. Estuar Microb Ecol 455–465

    Google Scholar 

  • Fell JW, Master IM (1975) Phycomycetes (Phytophthora spp. nov. and Pythium sp. nov.) associated with degrading mangrove (Rhizophora mangle) leaves. Can J Bot 53:2908–2922

    Article  Google Scholar 

  • Fell JW, Master IM (1980) The association and potential role of fungi in mangrove detrital systems. Bot Mar 23:257–263

    Google Scholar 

  • Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Pharmaceutical and bioactive natural products, Springer, p 419–457

    Google Scholar 

  • Gao S-S, Li X-M, Du F-Y, Li C-S, Proksch P, Wang B-G (2010) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 9:59–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao S-S, Li X-M, Li C-S, Proksch P, Wang B-G (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21:2894–2897

    Article  PubMed  CAS  Google Scholar 

  • Heald EJ, Odum WE (1970) The contribution of mangrove swamps to Florida fisheries

    Google Scholar 

  • Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Huang LH, Kaneko T (1996) Pyrenomycetes and Loculoascomycetes as sources of secondary metabolites. J Ind Microbiol 17:402–416

    Article  CAS  Google Scholar 

  • Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. Mar Mycol Pract Approach 172–204

    Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi—still an underrepresented resource. Mar Drugs 14:19. https://doi.org/10.3390/md14010019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482

    Article  PubMed  CAS  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG, Alias SA (1997) Biodiversity of mangrove fungi. Biodivers Trop microfungi. Hong Kong Univ Press, Hong Kong, pp 71–92

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:187

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kakeya H, Onozawa C, Sato M, Arai K, Osada H (1997) Neuritogenic effect of epolactaene derivatives on human neuroblastoma cells which lack high-affinity nerve growth factor receptors. J Med Chem 40:391–394

    Article  PubMed  CAS  Google Scholar 

  • Klaiklay S, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Buatong J, Sakayaroj J (2012) Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron 68:2299–2305

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Submarine lichens and lichenlike associations. Mar mychology high fungi. Academic, New York, pp 70–78

    Google Scholar 

  • Kuthubutheen AJ (1981) Fungi associated with the aerial parts of Malaysian mangrove plants. Mycopathologia 76:33–43

    Article  Google Scholar 

  • Lee Y-M, Li J, Zhang P, Hong J-K, Lee C-O, Jung J-H (2011) A cytotoxic fellutamide analogue from the sponge-derived fungus aspergillus versicolor. Bull Kor Chem Soc 32:3817–3820

    Article  CAS  Google Scholar 

  • Li H, Huang H, Shao C, Huang H, Jiang J, Zhu X, Liu Y, Liu L, Lu Y, Li M (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235

    Article  PubMed  CAS  Google Scholar 

  • Li D, Xu Y, Shao C-L, Yang R-Y, Zheng C-J, Chen Y-Y, Fu X-M, Qian P-Y, She Z-G, de Voogd NJ (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10:234–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liberra K, Lindequist U (1995) Marine fungi – a prolific resource of biologically active natural products? Pharmazie 50:583–588

    PubMed  CAS  Google Scholar 

  • Malmstrøm J, Christophersen C, Barrero AF, Oltra JE, Justicia J, Rosales A (2002) Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor. J Nat Prod 65:364–367

    Article  PubMed  CAS  Google Scholar 

  • Newell SY (1976) Mangrove fungi: the succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings

    Google Scholar 

  • Newell SY, Miller JD, Fell JW (1987) Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Appl Environ Microbiol 53:2464–2469

    PubMed  PubMed Central  CAS  Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22:671–738

    Google Scholar 

  • Pang K-L, Overy DP, Jones EBG, Calado MDL, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha H-J, Bills GF (2016) ‘Marine fungi’ and ‘marine derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175

    Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Article  Google Scholar 

  • Raghukumar C (2002) Bioremediation of coloured pollutants by terrestrial versus facultative marine fungi

    Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Bio Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Raghukumar C, Chandramohan D, Michel FC, Redd CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–106

    Article  CAS  Google Scholar 

  • Raghukumar C, D’souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    PubMed  PubMed Central  CAS  Google Scholar 

  • Raghukumar C, Mohandass C, Kamat S, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzym Microb Technol 35:197–202

    Article  CAS  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152

    Article  PubMed  CAS  Google Scholar 

  • Sarma VV (2007) Marine fungi and their biotechnological potential – an appraisal. In: Proceedings of the international conference on “Applied bioengineering” held on 5–7 December, 2007 at Sathyabama University, Chennai, India, pp 16–22

    Google Scholar 

  • Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Vittal BPR (2000) Biodiversity of mangrove fungi on different substrata of Rhizophora apiculata and Avicennia spp. from Godavari and Krishna deltas, east coast of India. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity Press, Hong Kong, pp 23–41

    Google Scholar 

  • Sarma VV, Vittal BPR (2001) Biodiversity of manglicolous fungi on selected plants in the Godavari and Krishna deltas, east coast of India. Fungal Divers 6:115–130

    Google Scholar 

  • Singh N, Steinke TD (1992) Colonization of decomposing leaves of Bruguiera gymnorrhiza (Rhizophoraceae) by fungi, and in vitro cellulolytic activity of the isolates. South Afr J Bot 58:525–529

    Article  Google Scholar 

  • Steinke TD, Holland AJ, Singh Y (1993) Leaching losses during decomposition of mangrove leaf litter. South Afr J Bot 59:21–25

    Article  CAS  Google Scholar 

  • Sun L-L, Shao C-L, Chen J-F, Guo Z-Y, Fu X-M, Chen M, Chen Y-Y, Li R, de Voogd NJ, She Z-G (2012) New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg Med Chem Lett 22:1326–1329

    Article  PubMed  CAS  Google Scholar 

  • Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A, Liu C, Li W, She Z, Lin Y (2012) Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg Med Chem Lett 22:3017–3019

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Sandjo L, Yun K, Leutou AS, Kim G-D, Choi HD, Kang JS, Hong J, Son BW (2011) Flavusides A and B, antibacterial cerebrosides from the marine-derived fungus Aspergillus flavus. Chem Pharm Bull 59:1174–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu P-J, Wang Y, Ma L-F, Zhu Y-H (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7:97–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng C-J, Shao C-L, Guo Z-Y, Chen J-F, Deng D-S, Yang K-L, Chen Y-Y, Fu X-M, She Z-G, Lin Y-C (2012) Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J Nat Prod 75:189–197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkateswara Sarma, V. (2018). Marine Fungi for Sustainable Development. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_31

Download citation

Publish with us

Policies and ethics