Skip to main content

Current Perspectives of Endophytic Fungi in Sustainable Development

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Endophytic fungi inhabit plant tissues asymptomatically and confer a high diversity. They are polyphyletic in nature and primarily belong to the division Ascomycota. Endophytes are an important component of sustainable development in community ecology as they support the rich biodiversity and bioremediation of organic pollutants, wastewater, poisonous gases, industrial sewage, and heavy metals or in agricultural sufficiency. Endophytes are known to produce different kinds of secondary metabolites, and many of them are similar to what the host plants produce. Around 80% of the world’s population, mostly those in the developing countries, still rely on herbal medicines for their primary healthcare. Usage of plant sources for commercial production of bioactive compounds requires sacrifice of several trees to obtain satisfactory amounts. This is more so if they were to be isolated from endemic and endangered plant species. Such an aspect poses a grave threat to biodiversity conservation and forces us to go for a judicious usage of plant resources. Hence, production of bioactive compounds by the microorganisms that are intrinsic to the host plant tissues gives us hope. This is because microbial fermentation is comparably cheaper and economically stable and offers a sustainable source to pharmaceutical industries. In this chapter current perspectives of endophytic fungi in sustainable usage such as bioactive compounds of therapeutic use, biotransformations, plant defense and protection mechanisms, biocontrol, and crop production and in sustainable development including nutrient recycling and ecosystem functioning are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, Matasyoh JC (2014) Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 4:257–270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abrahão MRE, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52:367–372

    Article  CAS  Google Scholar 

  • Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569

    Article  CAS  Google Scholar 

  • Agusta A, Wulansari D, Nurkanto A, Fathoni A (2014) Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from yellow moonseed plant (Archangelisia flava (L.) Merr.). Procedia Chem 13:38–43

    Article  CAS  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  PubMed  CAS  Google Scholar 

  • Aneja M, Gianfagna TJ, Hebbar PK (2005) Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiol Mol Plant Pathol 67:304–307

    Article  CAS  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots. Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L (2010) Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 27:1709–1719

    Article  PubMed  CAS  Google Scholar 

  • Azerad R (1999) Microbial models for drug metabolism. In: Biotransformations. Springer, Berlin, pp 169–218

    Chapter  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16

    Article  Google Scholar 

  • Babu AG, Shim J, Bang K-S, Shea PJ, Oh B-T (2014a) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Babu AG, Shim J, Shea PJ, Oh B-T (2014b) Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudangrass. Ecol Eng 69:186–191

    Article  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker, NewYork

    Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi I-Y, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K, Schäfer P, Schwarczinger I (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  PubMed  CAS  Google Scholar 

  • Bateman R (2002) Best-bet solutions for cocoa diseases. Gro-Cocoa Newsl 1:4–5

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Springer, Berlin, pp 53–69

    Chapter  Google Scholar 

  • Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659

    Article  PubMed  CAS  Google Scholar 

  • Berry LA, Deacon JW (1992) Video-analysis of Gliocladium roseum in relation to mechanism of antagonism of plant pathogens. Bull OILB/SROP 15:64–66

    Google Scholar 

  • Bhagobaty RK, Joshi SR, Kumar R (2010) Penicillium verruculosum RS7PF: a root fungal endophyte associated with an ethno-medicinal plant of the indigenous tribes of Eastern India. Afr J Microbiol Res 4:766–770

    CAS  Google Scholar 

  • Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44:1–12

    Google Scholar 

  • Bisht D, Owais M, Venkatesan K (2006) Potential of plant-derived products in the treatment of mycobacterial infections. Mod Phytomedicine Turn Med Plants into Drugs, 293–311

    Google Scholar 

  • Boberg JB, Ihrmark K, Lindahl BD (2011) Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal Ecol 4:110–114

    Article  Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64:965–967

    Article  PubMed  CAS  Google Scholar 

  • Borges KB, de Souza Borges W, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009a) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20:385–397

    Article  CAS  Google Scholar 

  • Borges W d S, Borges KB, Bonato PS, Said S, Pupo MT (2009b) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163

    Article  CAS  Google Scholar 

  • Bryant MK, May KJ, Bryan GT, Scott B (2007) Functional analysis of a β-1, 6-glucanase gene from the grass endophytic fungus Epichloë festucae. Fungal Genet Biol 44:808–817

    Article  PubMed  CAS  Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour-the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:fiw114

    Article  PubMed  CAS  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    Article  PubMed  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigricans. Microbiology 148:2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang H-W, Li L, Dai C-C (2013) The potential application of the endophyte Phomopsis liquidambari to the ecological remediation of long-term cropping soil. Appl Soil Ecol 67:20–26

    Article  Google Scholar 

  • Cheng M-J, Wu M-D, Yanai H, Su Y-S, Chen I-S, Yuan G-F, Hsieh S-Y, Chen J-J (2012) Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem Lett 5:467–472

    Article  CAS  Google Scholar 

  • Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P (2005) 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? J Nat Prod 68:1103–1105

    Article  PubMed  CAS  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science (80- ) 285:1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Da Silva MF, de Souza Antônio C, de Oliveira PJ, Xavier GR, Rumjanek NG, de Barros Soares LH, Reis VM (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243

    Article  CAS  Google Scholar 

  • Dai C, Tian L, Zhao Y, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255

    Article  PubMed  CAS  Google Scholar 

  • Davis EW (1995) Ethnobotany: an old practice, a new discipline. Dioscorides Press, Portland

    Google Scholar 

  • Deng Z, Wang W, Tan H, Cao L (2012) Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223:5321–5329

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357

    Article  CAS  Google Scholar 

  • DESA UN (2015) Population division

    Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhankhar S, Dhankhar S, Parkash Yadav J (2013) Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem (Los Angeles) 9:624–632

    CAS  Google Scholar 

  • Dingle J, Mcgee PA (2003) Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycol Res 107:310–316

    Article  PubMed  Google Scholar 

  • Doble M, Kruthiventi AK, Gaikar VG (2004) Biotransformations and bioprocesses. CRC Press, Boca Raton

    Google Scholar 

  • Domenech P, Barry CE, Cole ST (2001) Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol 4:28–34

    Article  PubMed  CAS  Google Scholar 

  • Easton HS, Christensen MJ, Eerens JPJ, Fletcher LR, Hume DE, Keogh RG, Lane GA, Latch GCM, Pennell CGL, Popay AJ (2001) Ryegrass endophyte: a New Zealand Grassland success story. In: Proceedings of the conference-New Zealand Grassland Association, pp 37–46

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Elsässer B, Krohn K, Flörke U, Root N, Aust H, Draeger S, Schulz B, Antus S, Kurtán T (2005) X-ray structure determination, absolute configuration and biological activity of phomoxanthone A. Eur J Org Chem 2005:4563–4570

    Article  CAS  Google Scholar 

  • Elsebai MF, Natesan L, Kehraus S, Mohamed IE, Schnakenburg G, Sasse F, Shaaban S, Gütschow M, König GM (2011) HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. J Nat Prod 74:2282–2285

    Article  PubMed  CAS  Google Scholar 

  • Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160

    Article  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Faeth SH, Shochat E (2010) Inherited microbial symbionts increase herbivore abundances and alter arthropod diversity on a native grass. Ecology 91:1329–1343

    Article  PubMed  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200

    Article  PubMed  Google Scholar 

  • Figueiredo AC, Almendra MJ, Barroso JG, Scheffer JJC (1996) Biotransformation of monoterpenes and sesquiterpenes by cell suspension cultures of Achillea millefolium L. ssp. millefolium. Biotechnol Lett 18:863–868

    Article  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226

    PubMed Central  CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710

    Article  PubMed  CAS  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukuda Y, Shinshi H (1994) Characterization of a novel cis-acting element that is responsive to a fungal elicitor in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 24:485–493

    Article  PubMed  CAS  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255:2751–2760

    Article  Google Scholar 

  • Gao F, Zhang J-M, Wang Z-G, Peng W, Hu H-L, Fu C-M (2013) Biotransformation, a promising technology for anti-cancer drug development. Asian Pac J Cancer Prev 14:5599–5608

    Article  PubMed  Google Scholar 

  • Ge HM, Zhang Q, Xu SH, Guo ZK, Song YC, Huang WY, Tan RX (2011) Chaetoglocins A–D, four new metabolites from the endophytic fungus Chaetomium globosum. Planta Med 77:277–280

    Article  PubMed  CAS  Google Scholar 

  • Ghahfarokhi RM, Goltapeh ME (2010) Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro. J Agric Technol 6:11–18

    Google Scholar 

  • Gimenez C, Cabrera R, Reina M, Gozalez-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    Article  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence⊥. J Nat Prod 69:509–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93

    Article  CAS  Google Scholar 

  • Hajlaoui MR, Dip D, Cherif M (2001) Contribution to Sclerotinia blight caused by Sclerotinia sclerotiorum (Lib.) de Bary. Al-Awamia 104:85–101

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodrıguez-Kábana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hankin L, Poincelot RP, Anagnostakis SL (1975) Microorganisms from composting leaves: ability to produce extracellular degradative enzymes. Microb Ecol 2:296–308

    Article  PubMed  CAS  Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    Article  CAS  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170

    Article  Google Scholar 

  • Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556–15564

    Article  PubMed  CAS  Google Scholar 

  • Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Holmes KA, Schroers H-J, Thomas SE, Evans HC, Samuels GJ (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3:199–210

    Article  Google Scholar 

  • Hoveland CS (1993) Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3–12

    Article  Google Scholar 

  • Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122

    Article  PubMed  CAS  Google Scholar 

  • Hussain H, Krohn K, Draeger S, Meier K, Schulz B (2009) Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Rec Nat Prod 3:114–117

    CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Istifadah N, Saleeba JA, McGee PA (2006) Isolates of endophytic Chaetomium spp. inhibit the fungal pathogen Pyrenophora tritici-repentis in vitro. Botany 84:1148–1155

    CAS  Google Scholar 

  • Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714

    Article  Google Scholar 

  • Jäschke D, Dugassa-Gobena D, Karlovsky P, Vidal S, Ludwig-Müller J (2010) Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathol 59:100–111

    Article  CAS  Google Scholar 

  • Jiang M, Cao L, Zhang R (2008) Effects of Acacia (Acacia auriculaeformis A. Cunn)-associated fungi on mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) growth in Cd-and Ni-contaminated soils. Lett Appl Microbiol 47:561–565

    Article  PubMed  CAS  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joost RE (1995) Acremonium in fescue and ryegrass: boon or bane? A review. J Anim Sci 73:881–888

    Article  PubMed  CAS  Google Scholar 

  • Kari Dolatabadi H, Mohammadi Goltapeh E, Mohammadi N, Rabiey M, Rohani N, Varma A (2011) Biocontrol potential of root endophytic fungi and Trichoderma species against fusarium wilt of lentil under in vitro and greenhouse conditions. J Agric Sci Technol 14:407–420

    Google Scholar 

  • Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    Article  PubMed  CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee I-J (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85

    Article  CAS  Google Scholar 

  • Kim HY, Choi GJ, Lee HB, Lee SW, Kim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim J-C (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44:332–337

    Article  PubMed  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes. Springer, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Kornsakulkarn J, Dolsophon K, Boonyuen N, Boonruangprapa T, Rachtawee P, Prabpai S, Kongsaeree P, Thongpanchang C (2011) Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron 67:7540–7547

    Article  CAS  Google Scholar 

  • Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490

    Article  PubMed  CAS  Google Scholar 

  • Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Li Y-C, Tao W-Y (2009) Paclitaxel-producing fungal endophyte stimulates the accumulation of taxoids in suspension cultures of Taxus cuspidata. Sci Hortic (Amsterdam) 121:97–102

    Google Scholar 

  • Li HM, Sullivan R, Moy M, Kobayashi DY, Belanger FC (2004) Expression of a novel chitinase by the fungal endophyte in Poa ampla. Mycologia 96:526–536

    Article  PubMed  CAS  Google Scholar 

  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li W, Chu L, White JF Jr, Xiong Z, Li H (2016) Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb–Zn contaminated soils. J Plant Interact 11:186–192

    Article  CAS  Google Scholar 

  • Lim C, Kim J, Choi JN, Ponnusamy K, Jeon Y, Kim S-U, Kim JG, Lee C (2010) Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J Microbiol Biotechnol 20:494–500

    PubMed  CAS  Google Scholar 

  • Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX (2004) Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 114:279–287

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2010) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Slater JH, BENNETT JA, Harper SHT (1981) Cellulase activities of some aerobic micro-organisms isolated from soil. Microbiology 127:231–236

    Article  CAS  Google Scholar 

  • Maccheroni W Jr, Azevedo JL (1998) Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation. J Gen Appl Microbiol 44:381–387

    Article  PubMed  CAS  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–218

    Article  PubMed  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    Article  CAS  Google Scholar 

  • Martin KL, Unkles SE, McDougall BM, Seviour RJ (2006) Purification and characterization of the extracellular β-1, 6-glucanases from the fungus Acremonium strain OXF C13 and isolation of the gene/s encoding these enzymes. Enzym Microb Technol 38:351–357

    Article  CAS  Google Scholar 

  • Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2016) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17

    Article  PubMed  CAS  Google Scholar 

  • McAlpine JB, Pazoles C, Stafford A (1999) Phytera’s strategy for the discovery of novel anti-infective agents from plant cell cultures. In: Bioassay methods in natural product research and drug development. Springer, Houten, pp 159–166

    Chapter  Google Scholar 

  • Mejia LC, Rojas EI, Maynard Z, Arnold AE, Kyllo D, Robbins N, Herre EA (2003) Inoculation of beneficial endophytic fungi into Theobroma cacao tissues. In: Proceedings of the 14th International Cocoa Research conference, Accra, II, pp 669–705

    Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  PubMed  CAS  Google Scholar 

  • Morandi MAB, Sutton JC, Maffia LA (2000) Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. Eur J Plant Pathol 106:439–448

    Article  Google Scholar 

  • Muñoz-Elías EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murali TS (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155

    Google Scholar 

  • Nakasaki K, Sasaki M, Shoda M, Kubota H (1985) Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Appl Environ Microbiol 49:37–41

    PubMed  PubMed Central  CAS  Google Scholar 

  • Naranjo-Briceño L, Pernía B, Guerra M, Demey JR, Sisto Á, Inojosa Y, González M, Fusella E, Freites M, Yegres F (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6:720–730

    PubMed  PubMed Central  Google Scholar 

  • Narisawa K, Tokumasu S, Hashiba T, Ohki T (2000) Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 49:141–146

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogueira SCP, Sandrim VC, Guimarães LHS, Jorge JA, Terenzi HF, Polizeli MLTM (2008) Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31:329–334

    Article  CAS  Google Scholar 

  • O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:1–18

    Article  CAS  Google Scholar 

  • Organization WHO (2011) World Health Organization global tuberculosis control. World Health Organization, Geneva

    Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314

    Article  Google Scholar 

  • Pandey PK, Singh S, Yadav RNS, Singh AK, Singh MCK (2014) Fungal endophytes: promising tools for pharmaceutical science

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009

    Article  PubMed  CAS  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Prado S, Buisson D, Ndoye I, Vallet M, Nay B (2013) One-step enantioselective synthesis of (4S)-isosclerone through biotransformation of juglone by an endophytic fungus. Tetrahedron Lett 54:1189–1191

    Article  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  PubMed  CAS  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:1

    Article  Google Scholar 

  • Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2010) Two new metabolites, Epoxydine A and B, from Phoma sp. Helv Chim Acta 93:169–174

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  PubMed  CAS  Google Scholar 

  • Rattan A, Kalia A, Ahmad N (1998) Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis 4:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209

    Article  CAS  Google Scholar 

  • Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community com-position in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381–396. https://doi.org/10.1007/s11104-015-2495-4

    Article  CAS  Google Scholar 

  • Robl D, da Silva Delabona P, Mergel CM, Rojas JD, dos Santos Costa P, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EAE, Jonkers W, Corby KH, May G (2012) Interactions between Fusarium verticillioides, Ustilagomaydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587

    Article  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL, Cruz R, Romero JV, Cortina Guerrero H (1980) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. CATIE, Turrialba

    Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  • Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109:121–126

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, H-Jür A, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shaanker RU, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Bioactive molecules and medicinal plants. Springer, Berlin, pp 197–213

    Chapter  Google Scholar 

  • Shalini S, Kotasthane AS (2007) Parasitism of Rhizoctonia solani by strains of Trichoderma spp. EJEAF Chem 6:2272–2281

    Google Scholar 

  • Shibuya H, Agusta A, Ohashi K, Maehara S, Simanjuntak P (2005) Biooxidation of (+)-catechin and (−)-epicatechin into 3, 4-dihydroxyflavan derivatives by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:866–867

    Article  CAS  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  PubMed  CAS  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72

    Article  PubMed  CAS  Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Sci York Then Washington 260:214

    Article  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strobel G, Stierle A, Stierle D, Hess WM (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon 47:71–80

    Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Article  PubMed  CAS  Google Scholar 

  • Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41

    Article  PubMed  CAS  Google Scholar 

  • Strom PF (1985a) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    PubMed  PubMed Central  CAS  Google Scholar 

  • Strom PF (1985b) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    PubMed  PubMed Central  CAS  Google Scholar 

  • Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27:1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Suresh B, Ritu T, Ravishankar GA (2006) Biotransformations as applicable to food industries. Food Sci Technol York-Marcel Dekker 148:1655

    CAS  Google Scholar 

  • Sutjaritvorakul T, Whalley AJS, Sihanonth P, Roengsumran S (2011) Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpus forest at Wiang Sa district Nan province, Thailand. J Agric Technol 7:115–121

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Subbiah V (2007) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím Méx 1:19–26

    Google Scholar 

  • Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient, and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24

    Article  CAS  Google Scholar 

  • Tondje PR, Hebbar KP, Samuels G, Bowers JH, Weise S, Nyemb E, Begoude D, Foko J, Fontem D (2006) Bioassay of Geniculosporium species for Phytophthora megakarya biological control on cacao pod husk pieces. Afr J Biotechnol 5:648

    Google Scholar 

  • Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Mycorrhiza. Springer, Heidelberg, pp 281–306

    Chapter  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Infante F, Castillo A, Arnold AE (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52:253–262

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789

    Article  PubMed  CAS  Google Scholar 

  • Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot (Tokyo) 57:559–563

    Article  CAS  Google Scholar 

  • WCED (1987) Our common future by World Commission on Environment and Development (WCED). Oxford University Press, New York, p 383

    Google Scholar 

  • White JF, Belanger F, Meyer W, Sullivan RF, Bischoff JF, Lewis EA (2002) Clavicipitalean fungal epibionts and endophytes-development of symbiotic interactions with plants. Symbiosis 33:201–213

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68:379–384

    Article  Google Scholar 

  • Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272

    Article  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Zhang Q, Gao YQ, Shi XW, Gao JM (2014) Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azadirachta. Nat Prod Res 28:1388–1392

    Article  PubMed  CAS  Google Scholar 

  • Yao M, Liu J-Z, Jin S, Jiao J, Gai Q, Wei Z, Fu Y, Zhao J (2014) A novel biotransformation of astragalosides to astragaloside IV with the deacetylation of fungal endophyte Penicillium canescens. Process Biochem 49:807–812

    Article  CAS  Google Scholar 

  • Yong YH, Dai CC, Gao FK, Yang QY, Zhao M (2009) Effects of endophytic fungi on growth and two kinds of terpenoids for Euphorbia pekinensis. Chin Tradit Herb Drug 40:1136–1139

    CAS  Google Scholar 

  • Zabalgogeazcoa I, Gundel PE, Helander M, Saikkonen K (2013) Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Divers 60:25–32

    Article  Google Scholar 

  • Zhang J, Zhang L, Wang X, Qiu D, Sun D, Gu J, Fang Q (1998) Microbial transformation of 10-deacetyl-7-epitaxol and 1β-hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis. J Nat Prod 61:497–500

    Article  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Liu M, Shi X, Zhao Z (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632

    Article  PubMed  Google Scholar 

  • Zhang P, Zhou P-P, Yu L-J (2009a) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59:227–232

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Draeger S, Schulz B, Krohn K (2009b) Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat Prod Commun 4:1449–1454

    PubMed  CAS  Google Scholar 

  • Zhang XX, Li CJ, Nan ZB, Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78

    Article  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R., Venkateswara Sarma, V. (2018). Current Perspectives of Endophytic Fungi in Sustainable Development. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_30

Download citation

Publish with us

Policies and ethics