Skip to main content

Abstract

Synthetic dyes are frequently used in different fields such as for food industry, paper and agricultural industry and science and technology. But due to the adverse toxicological side effects of synthetic pigments used in the industries, now research is focused on the products from natural resources. Microbial compounds are natural-coloured substances produced by microorganisms, especially fungi and bacteria. Biopigments from natural resources can replace the synthetic dyes used in pharma industries. Most of the microbes reported to produce carotenoids belong to Myxococcus spp. Other organisms include spp. of Serratia, Streptomyces and Agrobacterium. The red-coloured basidiomycetous yeast Xanthophyllomyces dendrorhous, green alga Haematococcus Pluvialis and Agrobacterium aurantiacum are known to produce astaxanthin, an orange-red pigment. Other organisms such as Serratia marcescens, Vibrio psychoerythrus, Rugamonas rubra, Streptoverticillium rubrireticuli and other eubacteria produce prodigiosin, a red pigment used in various applications. Astaxanthin from Xanthophyllomyces sp., arpink red from Penicillium sp. and riboflavin from Ashbya sp. and pigments from Monascus spp. are used in many food industries. Other pigment-producing fungi are chaetomium cupreum, Penicillium aculeatum, Fusarium chlamydosporum, etc. Fungi produce an interesting class of pigmented secondary metabolites, called azaphilones. Recently many pharmaceutical industries are using microbial pigments in their products. Microbial pigments produced by pharmaceutical industry may act as antibiotics, anticancer, antiproliferative and immunosuppressive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihisa et al (2005) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2(10):1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Andersesen DO, Weber ND, WoodS G, Hughes BG, Murray BK, North JA (1991) In vitro virucidal activity of selected anthraquinones and anthraquinones derivatives. Antivir Res 16(2):185–196

    Article  Google Scholar 

  • Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Prome JC, Laussac JP, Goma G (1994) Pigments of Monascus. J Food Sci 59:862–865

    Article  CAS  Google Scholar 

  • Britton G et al (2004) Carotenoids- handbook. Birkhauser. ISBN:3-7643-6180-8

    Google Scholar 

  • Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193

    Article  CAS  PubMed Central  Google Scholar 

  • Casta FTM, Justo GZ, Duran N, Noguerira PA, Lopes SCP (2005) The use of violacein in its free and encapsulated form in polymeric systems against malaria. Brazilian Patent PIBr.056399-0

    Google Scholar 

  • Cera-Olmedo E (2001) Phycomyces and the biology of light and color. FEMS Microbiol Rew 25:503–512

    Article  Google Scholar 

  • Chang JC, Wu MC, Liu IM, Cheng JT (2006) Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats. Horm Metab Res 38:76–81

    Article  CAS  PubMed  Google Scholar 

  • Chew BP, Park JS, Wong MW, Wong TS (1998) A comparison of the anticancer activities of beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 19(3a):1849–1853

    Google Scholar 

  • Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deorukhar AA, Chander R, Ghosh SB, Sainis KB (2007) Identification of a red pigment bacterium producing a potent anti-tumor N-alkylated prodigiosin as Serratia Marcescens. Res Microbiol 158(5):399–404

    Article  CAS  Google Scholar 

  • Di-Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274(2):532–538

    Article  CAS  PubMed  Google Scholar 

  • Dong J et al (2006) New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria. Microbiol Lett 264(1):65–79

    Article  CAS  Google Scholar 

  • Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321

    CAS  Google Scholar 

  • Dufosse L (2009) Pigments. Microb Encylopedia Microbiol 4:457–471

    Article  Google Scholar 

  • Dufosse L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large scale production of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  PubMed  Google Scholar 

  • Duncan SJ et al (2001) Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123(4):554–560

    Article  CAS  PubMed  Google Scholar 

  • Duran M, Ponezi AN, Faljoni-Alario A, Teixerira MF, Justo GJ, Duran N (2012) Potential application of violacein: a microbial pigment. Med Chem Res 21(7):1524–1532

    Article  CAS  Google Scholar 

  • Fatima N, Kalsoom A, Mumtaz A, Muhammad SA (2014) Computational drug designing of fungal pigments as potential aromatase inhibitors. Bangladesh J Pharmacol 9:575–579

    Article  Google Scholar 

  • Feher D, Barlow RS, Lorenzo PS, Hemscheidt T (2008) A 2-substituted prodiginine, 2-(p-hydroxybenzyl) prodigiosin from Pseudoalteromonas rubra. J Nat Prod 71(11):1970–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein mediated human leukemia cell death. Blood 104:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Florencio JA, Soccol CR, Furlanetto LF, Biofilm TMB, Krieger N, Baron M, Fontana JD (1998) A factorial approach for a sugarcane juice based low cost culture medium: increasing the astaxanthin production by the red yeast Phaffia rhodozyma. Bioprocess Eng 19:161–164

    CAS  Google Scholar 

  • Flores-Cotera LB, Sanchez S (2001) Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium. Biotechnol Lett 23:793–797

    Article  CAS  Google Scholar 

  • Furstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Chem Int Ed Engl 42:3582–3603

    Article  CAS  Google Scholar 

  • Garton GA, Goodwin TW, Lijinsky W (1951) General conditions governing //-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff. Biochem J 48:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber NN, Ammar MS (1979) New antibiotic pigments related to fusarubin from Fusarium solani (Mart.) Sacc. II. Structure elucidations. J Antibiot 32:685–688

    Article  CAS  PubMed  Google Scholar 

  • Gill M, Steglich W (1987) Pigments of fungi (macromycetes). Prog Chem Org Nat Prod 51:1

    CAS  Google Scholar 

  • Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002) A prospective study of tomato products, lycopene and prostate cancer risk. J Nat Cancer Inst 94(5):391–398

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Sharma D, Aggarwal S, Nagpal N (2013) Pigment production from Trichoderma spp. for dyeing of silk and wool. IJSN 4(2):351–355

    CAS  Google Scholar 

  • Hammond RK, White DC (1970) Inhibition. Inhibition of carotenoid hydroxylation in Staphylococcus aureus by mixed-function inhibitors. J Bacteriol 103:607–610

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto T, Tahara S, Takaoka S, Tori M, Asakawa Y (1994) Structures of daldinins A.apprx.C, three novel azaphilone derivatives from ascomycetous fungus Daldinia concentrica. Chem Pharm Bull 42:2397–2379

    Article  CAS  Google Scholar 

  • Hellwig V, Ju YM, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Prog 4:39–54

    Article  Google Scholar 

  • Hobbs C (2003) Medicinal mushrooms: an exploration of tradition, health and culture. Botanica Press, Summertown

    Google Scholar 

  • Hsu LC, Hsu YW, Liang YH, Kuo YH, Pan TM (2011) Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agri Food Chem 59(4):1124–1130

    Article  CAS  Google Scholar 

  • http://www. Transparencymarketresearch.com/natural-colours-market.html (n.d.). Food additives market- global industry analysis, size, growth, trends and forecast 2012–2018. Transparency Market Research – Publications, New York

    Google Scholar 

  • Hwanmook K, Sangbae H, Changwoo L, Kihoon L, Sehyung P, Youngkook K (2006) Use of prodigiosin for treating diabetes mellitus. US Patent 6638968

    Google Scholar 

  • Iacobucci GA, Sweeney LG (1981) Process for enhancing the sunlight stability of rubrolone US Patent 4:285–985

    Google Scholar 

  • Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68–75

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Han SB, Lee OW, Lee K, Park S, Kim Y (1989) Use of prodigiosin for treating diabetes mellitus. US Patent 6 (1989) 638, 968 B1. 33

    Google Scholar 

  • Kim CH, Kim SW, Hong SI (1999a) An integrated fermentation separation process for the production of red pigment by Serratia sp. KH-95. Process Biochem 35:485–490

    Article  Google Scholar 

  • Kim HS, Hayashi HJ, Shibata Y (1999b) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans in a potent antimalarial agent. Biol Pharm Bull 22(5):532–534

    Article  CAS  PubMed  Google Scholar 

  • Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5- fluorouracil cytotoxicity, induces apoptosis and inhibits akt mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27:508–516

    Article  CAS  PubMed  Google Scholar 

  • Konzen M, De Marco D, Cordova CA, Vieira TO, Antonio AV, Creezynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14(24):8307–8313

    Article  CAS  PubMed  Google Scholar 

  • Lampila LE, Wallen SE, Bullerman LB (1985) A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia 90:65–80

    Article  CAS  PubMed  Google Scholar 

  • Lichstein HC, van De Sand VF (1946) The antibiotic activity of violacein, prodigiosin, and phthiocol. J Bacteriol 52:145–146

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane UJ (2006a) Agric Food Chem 54:7027

    Article  CAS  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2006b) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54(19):7028–7035

    Article  CAS  Google Scholar 

  • Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories 8:24

    Article  CAS  Google Scholar 

  • Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharm 39:1095–1102

    Article  CAS  Google Scholar 

  • Mathews-Roth MM (1982) Antitumor activity of β-carotene, canthaxanthin and phytoene. Oncology 39(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S et al (2004) Impact of violacein producing bacteria on survival and feeding of Bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintel/Leatherhead Food Research (2011) http://www. Food coloors, market, technical and regulatory insights

    Google Scholar 

  • Nakamura Y, Sawada T, Morita Y, Tamiya E (2003) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12:79–86

    Article  Google Scholar 

  • Osmanova N, Schultze W, Ayoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315

    Article  CAS  Google Scholar 

  • Palanichamy V, Hundet A, Mitra B, Reddy N (2011) Optimization of cultivation parameters for growth and pigment Production by streptomyces spp. isolated from marine sediment and rhizosphere soil. Int J Plant Anim Envir Sci 1(3):158–170

    CAS  Google Scholar 

  • Pandey R, Chander R, Sainis KB (2007) Prodigiosins A novel family of immunosuppressants with anticancer activity. Ind J Biochem Biophys 44:295–302

    CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    Article  CAS  PubMed  Google Scholar 

  • Park et al (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Prathumpai W, Phimmakong K, Srikitikulchai P, Wongsa P (2006) Kinetic study of naphthoquinone and key metabolite production of C unilateralis BCC 1869. Thai J Biotechnol 7(2):39–43

    Google Scholar 

  • Reyes FG, Valim MF, Vercesi AE (1996) Effect of organic synthetic food colours on mitochondrial respiration. Food Addit Contam 13(1):5–11

    Article  CAS  PubMed  Google Scholar 

  • Sakaki H, Nakanishi T, Satonaka KY, Miki W, Fujita T, Komemushi S (2000) Properties of high to rularhodin producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205

    Article  CAS  PubMed  Google Scholar 

  • Sánchez C, Brana AF, Méndez C, Salas JA (2006) Re- evaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chem Bio Chem 7:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fibre Text Res 37:68–73

    CAS  Google Scholar 

  • Soumya K, Narasimha Murthy K, Sreelatha GL, Srinivas C, Sharmila T (2013) Influence of growth factors on pigmentation of Chaetomium cupreum SS – 02 and the antibacterial efficacy of the pigment against Ralstonia solanacearum. Int J Adv Res 1(10):212–219

    Google Scholar 

  • Stadler M et al (1995) Novel bioactive azaphilones from fruit bodies and mycelial cultures of the ascomycete Bulgaria inquinans (Fr.). Nat Prod Lett 7(1):7–14

    Article  CAS  Google Scholar 

  • Starr MP (1958) The blue pigment of Corynebacterium insidiosum. Arch Mikrobiol 30:25–334

    Article  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK (2002) Scytonemin- a marine natural product inhibitor of kinases key in hyperproliferation inflammatory diseases. Inflamm Res 51(12):112–114

    Article  CAS  PubMed  Google Scholar 

  • Strudikova M et al (2000) Mikrobialna produkcia farbnych azaphilonovych metabolitov. Chem List 94:105–110

    Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2014) Microbial pigment as natural color sources: current trends and future perspectives. J Food Sci Technol. https://doi.org/10.1007/s13197-014-1601-6

  • Ungureanu C, Ferdes M (2012) Evaluation of antioxidant and antimicrobial activities of torularhodin. Adv Sci Lett 18(1):50–53

    Article  CAS  Google Scholar 

  • Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Electron J Biol 5(3):49–61

    Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K, Carroll PO (1999) Microbial bioconversion of rice broken to food grade pigments naturally exciting colours. World Ingred 12:39–42

    Google Scholar 

  • Wang J, Lu Z, Chi J (1997) Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. Curr Ther Res 58(12):64–78

    Article  Google Scholar 

  • Wissgott U, Bortlik K (1996) Prospects for new natural food colorants. Trends Food Sci Technol 7:298–302

    Article  CAS  Google Scholar 

  • Zhao DH, Lu L, Qin HL (1998) Studies on the properties of a microbial blue pigment. Food Ferment Ind 5:21–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tirumale, S., Wani, N.A. (2018). Biopigments: Fungal Pigments. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_23

Download citation

Publish with us

Policies and ethics