Skip to main content

Bio-valorization of Dairy Whey for Bioethanol by Stress-Tolerant Yeast

  • Chapter
  • First Online:

Abstract

Ethanol as a fuel has been used during the course of mankind industrial and social history. But due to the tax burden on ethanol and the cheaper cost of kerosene oil, it quickly substitutes ethanol. Ethanol is obtained by anaerobic fermentation by preferably yeast using sugars. Various different agro-industrial residues were used for the production of bioethanol at pilot scale. One important substrate, i.e., lactose, mainly present in milk and recognized as a huge unexplored waste remains from all the different kinds of cheese produced worldwide by the dairy processing sector. The global production of cheese whey is over 160 million tons production per year, showing a 1–2% annual growth rate. During fermentation of sugar to ethanol, yeast strains have to be capable to endure certain physiological stress and still growing actively at economically and in principle suitable standards. The future of ethanol production using stress-tolerant yeast to make the process more economically viable is very important. Utilization of high gravity substrate like concentrated cheese whey required the yeast strains with better and higher osmotolerant strains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Fujita Y, Takaoka Y, Kurita E, Yano S, Tanaka N, Nakayama KI (2009) Ethanol-tolerant saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreadingdeficient DNA polymerase δ. J Biosci Bioeng 108(3):199–204

    Article  PubMed  CAS  Google Scholar 

  • Ali M et al (2014) Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. J Biol Chem 289(40):27625–27639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 C by kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51(6):1314–1320

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ansanay-Galeote V, Blondin B, Dequin S, Sablayrolles JM (2001) Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett 23(9):677–681

    Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    Article  PubMed  CAS  Google Scholar 

  • Arthur H, Watson K, McArthur CR, Clark-Walker GD (1978) Naturally occurring respiratory deficient Candida slooffii strains resemble petite mutants. Nature 271(5647):750

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357

    Google Scholar 

  • Balakumar S, Arasaratnam V (2014) Enhanced production of ethanol by high gravity glucose fermentation at temperatures above 40 oC by saccharomyces cerevisiae S1 using a soya flour supplemented medium. J Natl Sci Found Sri Lanka 42(2):111–117

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52 C and producing ethanol at 45 C and 50 C. World J Microbiol Biotechnol 8(3):259–263

    Article  PubMed  CAS  Google Scholar 

  • Bastos VD (2007) Etanol, alcoolquímica e biorrefinarias. BNDES Setorial 25:5–38

    Google Scholar 

  • Becerra M, Baroli B, Fadda AM, Mendez JB, Siso MG (2001) Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzym Microb Technol 29(8):506–512

    Article  CAS  Google Scholar 

  • Beney L, de Maranon IM, Marechal PA, Gervais P (2000) Influence of thermal and osmotic stresses on the viability of the yeast Saccharomyces cerevisiae. Int J Food Microbiol 55(1):275–279

    Article  PubMed  CAS  Google Scholar 

  • Benschoter AS, Ingram LO (1986) Thermal tolerance of Zymomonas mobilis: temperature-induced changes in membrane composition. Appl Environ Microbiol 51(6):1278–1284

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of Osmotolerance in Fungi1. Adv Microb Physiol 33:145–212 Academic Press

    Article  PubMed  CAS  Google Scholar 

  • Brady D, Nigam P, Marchant R, Singh D, McHale AP (1997) The effect of Mn 2+ on ethanol production from lactose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioprocess Biosyst Eng 17(1):31–34

    CAS  Google Scholar 

  • Brethauer S, Wyman CE (2010) Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874

    Article  PubMed  CAS  Google Scholar 

  • Briggs DE, Boulton CA, Brookes PA, Stevens R (2004) Native african beers. In: Stevens R (ed) Brewing: science and practice. CRC Press, Cambridge, pp 589–605

    Google Scholar 

  • Brooks AA (2008) Ethanol production potential of local yeast strains isolated from ripe banana peels. Afr J Biotechnol 7(20):3752–3755

    Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12(2):323–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98(15):2824–2828

    Article  PubMed  CAS  Google Scholar 

  • Chan WC, Su MQ (2008) Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter. Bioresour Technol 99(17):8016–8021

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45(1):569–606

    Article  PubMed  CAS  Google Scholar 

  • D’Amore TONY, Panchal CJ, Stewart GG (1988) Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 54(1):110–114

    Google Scholar 

  • D’Amore T, Celotto G, Russell I, Stewart GG (1989) Selection and optimization of yeast suitable for ethanol production at 40 C. Enzym Microb Technol 11(7):411–416

    Google Scholar 

  • Da Rosa AV (2009) Fundamentals of renewable energy processes. Academic, Burlington

    Google Scholar 

  • Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energ Conver Manag 50(7):1746–1176

    Article  CAS  Google Scholar 

  • de Souza CJ, Costa DA, Rodrigues MQ, dos Santos AF, Lopes MR, Abrantes AB et al (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69

    Article  PubMed  CAS  Google Scholar 

  • De Wit JN (2001) Lecturer’s handbook on whey and whey products. European Whey Products Association, Brussels

    Google Scholar 

  • Detroy RW, St Julian G (1982) Biomass conversion: fermentation chemicals and fuels. CRC Crit Rev Microbiol 10(3):203–228

    Article  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2001) Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress. Biochem 40(48):14669–14678

    Article  CAS  Google Scholar 

  • Diniz RH, Silveira WB, Fietto LG, Passos FM (2012) The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie Van Leeuwenhoek 101(3):541–550

    Article  PubMed  CAS  Google Scholar 

  • Domingues L, Dantas MM, Lima N, Teixeira JA (1999) Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain. Biotechnol Bioeng 64(7):692

    Article  PubMed  CAS  Google Scholar 

  • Doyle A (2005) Another step in biofuel supply. Ir Farmers J Interact 2005:12–16

    Google Scholar 

  • Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819

    Article  PubMed  CAS  Google Scholar 

  • FAO W (2012) IFAD. The state of food insecurity in the world, 65

    Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354

    Article  PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Google Scholar 

  • García-Martínez T, Bellincontro A, Peinado RA, Mauricio JC, Mencarelli F, Moreno JJ (2011) Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose. Food Chem 127(3):1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Ghaly AE, Kamal MA (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38(3):631–644

    Article  PubMed  CAS  Google Scholar 

  • Gibson A (2006) Ethanol from whey. Sustainable energy conference, 26–27 July, Palmerston North, New Zealand

    Google Scholar 

  • Guimarães PM, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28(3):375–384

    Article  PubMed  CAS  Google Scholar 

  • Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeast able to produce ethanol from glucose at 40 C. Appl Microbiol Biotechnol 19(5):361–363

    Article  CAS  Google Scholar 

  • Hamilton R (1998) The manufacture of ethanol from whey. Chemical processes in New Zealand: New Zealand Institute of Chemistry

    Google Scholar 

  • Hernandez-Saavedra NY, Ochoa JL, Vazquez-Dulhalt R (1995) Osmotic adjustment in marine yeast. J Plankton Res 17(1):59–69

    Article  CAS  Google Scholar 

  • Hughes DB, Tudroszen NJ, Moye CJ (1984) The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of kluveromyces marxianus. Biotechnol Lett 6(1):1–6

    Article  CAS  Google Scholar 

  • Johnson FX, Rosillo-Calle F (2007) Biomass, livelihoods and international trade. Stockholm Environment Institute, Stockholm

    Google Scholar 

  • Kang HW, Kim Y, Kim SW, Choi GW (2012) Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess Biosyst Eng 35(1-2):115–122

    Article  PubMed  CAS  Google Scholar 

  • Kida K, Kume K, Morimura S, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Ferment Bioeng 74(3):169–173

    Article  CAS  Google Scholar 

  • Kitagawa T, Tokuhiro K, Sugiyama H, Kohda K, Isono N, Hisamatsu M, … Imaeda T (2010) Construction of a β-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl Microbiol Biotechnol 87(5): 1841–1853

    Google Scholar 

  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975

    Article  PubMed  CAS  Google Scholar 

  • Kosikowski FV (1979) Whey utilization and whey products1. J Dairy Sci 62(7):1149–1160

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Dimitropoulou S, Kanellaki M, Marchant R, Nigam P, Banat IM, Koutinas AA (2002) High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour Technol 82(2):177–181

    Article  PubMed  CAS  Google Scholar 

  • Krouwel PG, Braber L (1979) Ethanol production by yeast at supraoptimal temperatures. Biotechnol Lett 1(10):403–408

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (eds) (1998) The yeasts, a taxonomic study. Elsevier, Amsterdam

    Google Scholar 

  • Lachance MA (1998) Kluyveromyces van der Walt emends. In: Van der Walt (ed) The Yeasts, 4th edn, pp 227–247

    Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24(1):17–26

    Article  Google Scholar 

  • Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100(4):507–519

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Yamakawa T, Kodama T (1993) Rapid growth of a thermotolerant yeast on palm oil. World J Microbiol Biotechnol 9(2):187–190

    Article  PubMed  CAS  Google Scholar 

  • Li SZ, Chan-Halbrendt C (2009) Ethanol production in (the) People’s Republic of China: potential and technologies. Appl Energy 86:S162–S169

    Article  CAS  Google Scholar 

  • Licht FO (2003) World ethanol markets: the outlook to 2012: an FO Licht special study. FO Licht

    Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98(17):3367–3374

    Article  PubMed  CAS  Google Scholar 

  • Ling KC (2008) Whey to ethanol. Is there a biofuel role for dairy cooperatives? Rural Cooperatives, Washington, DC

    Google Scholar 

  • Löser C, Urit T, Nehl F, Bley T (2011) Screening of Kluyveromyces strains for the production of ethyl acetate: design and evaluation of a cultivation system. Eng Life Sci 11(4):369–381

    Article  CAS  Google Scholar 

  • Lyons TP, Cunningham JD (1980) Fuel alcohol from whey. Am Dairy Rev 42(11):42A–42E

    Google Scholar 

  • Marullo P, Mansour C, Dufour M, Albertin W, Sicard D, Bely M, Dubourdieu D (2009) Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res 9(8):1148–1160

    Article  PubMed  CAS  Google Scholar 

  • Marwaha SS, Kennedy JF (1988) Whey – pollution problem and potential utilization. Int J Food Sci Technol 23(4):323–336

    Article  Google Scholar 

  • Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47(3):195–203

    Article  CAS  Google Scholar 

  • Menon V, Prakash G, Rao M (2010) Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: galactoxyloglucan predominant hemicellulose. J Biotechnol 148(4):233–239

    Article  PubMed  CAS  Google Scholar 

  • Michel GP, Starka JIRI (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165(3):1040–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morimura S, Ling ZY, Kida K (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J Ferment Bioeng 83(3):271–274

    Article  CAS  Google Scholar 

  • Morris D (1993) Ethanol: a 150 year struggle toward a renewable future. Institute for Local Self-Reliance, Washington, DC

    Google Scholar 

  • Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G et al (2014) Phenotypic evaluation of natural and industrial saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 98(22):9483–9498

    Article  PubMed  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S et al (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nwachukwu IN, Ibekwe VI, Nwabueze RN, Anyanwu BN (2006) Characterisation of palm wine yeast isolates for industrial utilisation. Afr J Biotechnol 5(19):1725–1728

    CAS  Google Scholar 

  • Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK (2012) Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol 39(4):557–566

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Nakamura K (2009) Production of ethanol from the mixture of beet molasses and cheese whey by a 2-deoxyglucose-resistant mutant of Kluyveromyces marxianus. FEMS Yeast Res 9(5):742–748

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Wijeyaratne SC, Hayashida S (1988) Temperature-sensitive mutants of a thermotolerant yeast, Hansenula polymorpha. J Ferment Technol 66(4):455–459

    Article  Google Scholar 

  • Orellana C, Neto RB (2006) Brazil and Japan give fuel to ethanol market. Nat Biotechnol 24:232

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG (2010) Kinetic study on ethanol production using saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J Chem Technol Biotechnol 85(10):1361–1367

    Article  CAS  Google Scholar 

  • Osho A (2005) Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. Afr J Biotechnol 4(7):660–662

    Article  CAS  Google Scholar 

  • Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624

    Article  PubMed  CAS  Google Scholar 

  • Pesta G, Meyer-Pittroff R, Russ W (2007) Utilization of whey. Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 193–207

    Book  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29(2):397–407

    Article  PubMed  CAS  Google Scholar 

  • Polat Z (2009) Integrated approach to whey utilization through natural zeolite adsorption/desorption and fermentation. Graduate School of Engineering, Izmir

    Google Scholar 

  • Prasetyo J, Naruse K, Kato T, Boonchird C, Harashima S, Park EY (2011) Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and, thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels 4(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev 4(2):135–156

    Article  CAS  Google Scholar 

  • Rana S, Tiwari R, Arora A, Singh S, Kaushik R, Saxena AK, Nain L (2013) Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal Agric Biotechnol 2(2):152–158

    Google Scholar 

  • Renewable Fuels Association (2009) Ethanol industry statistics. Online: http://www.ethanolrfa.org/industry/statistics

  • RFA-Renewable Fuels Association (2010) The industry-statistics

    Google Scholar 

  • Rogosa M, Browne HH, Whittier EO (1947) Ethyl alcohol from whey. J Dairy Sci 30(4):263–269

    Article  Google Scholar 

  • Ruyters S, Mukherjee V, Verstrepen KJ, Thevelein JM, Willems KA, Lievens B (2015) Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol 42(1):39–48

    Article  PubMed  CAS  Google Scholar 

  • Sansonetti S, Curcio S, Calabrò V, Iorio G (2009) Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenergy 33(12):1687–1169

    Article  CAS  Google Scholar 

  • Schirmer-Michel ÂC, Flôres SH, Hertz PF, Matos GS, Ayub MAZ (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant candida guilliermondii NRRL Y-2075. Bioresour Technol 99(8):2898–2904

    Article  PubMed  CAS  Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147

    Article  PubMed  CAS  Google Scholar 

  • Silveira WB, Passos FJV, Mantovani HC, Passos FML (2005) Ethanol production from cheese whey permeates by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Technol 36(7):930–936

    Article  CAS  Google Scholar 

  • Siso MG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(1):1–11

    Article  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704

    Article  CAS  Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31(6):416–425

    Article  Google Scholar 

  • Souza RR (2006) Oportunidades e desafios para o mercado mundial de álcool automotivo. Universidad Federal de Río de Janeiro, Río de Janeiro

    Google Scholar 

  • Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS 1 and VS 3 strains. Bioresour Technol 83(3):199–202

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37(2):139–149

    Article  PubMed  CAS  Google Scholar 

  • Stewart GG (2001) Yeast management–the balance between fermentation efficiency and beer quality. Tech Q:39–46

    Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. Microbiology 136(8):1469–1474

    CAS  Google Scholar 

  • Szczodrak J, Targoński Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31(4):300–303

    Article  PubMed  CAS  Google Scholar 

  • Tamás MJ, Hohmann S (2003) The osmotic stress response of saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Chapman & Hall, New York, pp 121–200

    Chapter  Google Scholar 

  • Tofalo R, Chaves-López C, Di Fabio F, Schirone M, Felis GE, Torriani S et al (2009) Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. Int J Food Microbiol 130(3):179–187

    Article  PubMed  CAS  Google Scholar 

  • Thammasittirong SNR, Thirasaktana T, Thammasittirong A, Srisodsuk M (2013) Improvement of ethanol production by ethanol-tolerant saccharomyces cerevisiae UVNR56. SpringerPlus 2(1):583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiele JH (2005) Estimate of the energy potential for fuel ethanol from putrescible waste in New Zealand. Waste Solutions Ltd., Dunedin

    Google Scholar 

  • Tsegaye Z (2016) Isolation, identification and characterization of ethanol tolerant yeast species from fruits for production of bio-ethanol. Int J Mod Chem Appl Sci 3:437–443

    Google Scholar 

  • Urit T, Löser C, Wunderlich M, Bley T (2011) Formation of ethyl acetate by Kluyveromyces marxianus on whey: studies of the ester stripping. Bioprocess Biosyst Eng 34(5):547–559

    Article  PubMed  CAS  Google Scholar 

  • Van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63(3–4):343–352

    Article  PubMed  Google Scholar 

  • Van Uden N (1984) Temperature pro®les of yeasts. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 25. Academic Press, London, pp 195–248

    Google Scholar 

  • Van Urk H, Voll WL, Scheffers WA, Van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56(1):281–287

    PubMed  PubMed Central  Google Scholar 

  • Vienne P, Von Stockar U (1985) Metabolic, physiological and kinetic aspects of the alcoholic fermentation of whey permeate by Kluyveromyces fragilis NRRL 665 and Kluyveromyces lactis NCYC 571. Enzym Microb Technol 7(6):287–294

    Article  CAS  Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Jayanata Y, Bajpai RK (1987) Effect of multiple substrates in ethanol fermentations from cheese whey. J Ferment Technol 65:249–253

    Article  CAS  Google Scholar 

  • Walter A, Rosillo-Calle F, Dolzan P, Piacente E, da Cunha KB (2008) Perspectives on fuel ethanol consumption and trade. Biomass Bioenergy 32(8):730–748

    Article  Google Scholar 

  • Wardrop FR, Liti G, Cardinali G, Walker GM (2004) Physiological responses of Crabtree positive and Crabtree negative yeasts to glucose upshifts in a chemostat. Ann Microbiol 54(1):103–114

    CAS  Google Scholar 

  • Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T (2010) Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresour Technol 101(24):9710–9714

    Article  PubMed  CAS  Google Scholar 

  • Webb BH, Whittier EO (1948) The utilization of whey: a review. J Dairy Sci 31(2):139–164

    Article  CAS  Google Scholar 

  • Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Lett 39(1–2):37–43

    Article  CAS  Google Scholar 

  • Whittier EO (1944) Lactose and its utilization: a review. J Dairy Sci 27(7):505–537

    Article  CAS  Google Scholar 

  • Wu CZ, Yin XL, Yuan ZH, Zhou ZQ, Zhuang XS (2010) The development of bioenergy technology in China. Energy 35(11):4445–4450

    Article  CAS  Google Scholar 

  • Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of saccharomyces cerevisiae and pichia stipitis. J Chem Technol Biotechnol 102(11):6473–6478

    Google Scholar 

  • Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169(12):907–914

    Article  PubMed  CAS  Google Scholar 

  • Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    Article  PubMed  CAS  Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Zuzuarregui A (2004) Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie Van Leeuwenhoek 85(4):271–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Manzoor, M., Yadav, P., Sohal, J.S., Aseri, G.K., Khare, N. (2018). Bio-valorization of Dairy Whey for Bioethanol by Stress-Tolerant Yeast. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_20

Download citation

Publish with us

Policies and ethics