Skip to main content

Multifactorial Role of Arbuscular Mycorrhizae in Agroecosystem

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Arbuscular mycorrhizal fungi (AMF) are naturally occurring organisms and associated with most of the plant families (90%). The main mechanism of AMF is the uptake of nutrients and water from the soil when colonized and through hyphae glomalin (biological glue) produced. AMF are tolerant to different environmental conditions. However, AMF also are in microbial activity. AMF are predictable biocontrol agents in disease management and in plant health. In the agricultural point of view, AMF improved nutrition and enhanced plant growth. In the recent years of organic and sustainable products, reduction in chemical fertilizers application and biological control of plant pathogens are a goal of governments, producers and food safety organizations; AMF, in addition to other benefits and microorganism can access this kind of production. Some important soil-borne phytopathogenic diseases are controlled by AMF especially Glomus species. Some antagonists’ microbes could also obstruct with AMF fungi and positive interaction with other microorganisms for biomass and yield. AMF have multifaceted approaches in the different agroecosystem. Therefore this article presents an overview of current knowledge on mycorrhiza and their potential benefits to agriculture ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Nasr A (1996) Effects of vesicular-arbuscular mycorrhiza on Tageteserecta and Zinnia elegans. Mycorrhiza 6:61–64

    Article  Google Scholar 

  • Altieri MA (2002) Agroecology: the sciences of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24

    Article  Google Scholar 

  • Arriagada C, Pacheco P, Pereira G, Machuca A, Alvear M, Ocampo JA (2009) Effect of arbuscular mycorrhizal fungal inoculation on Eucalyptus globulus seedlings and some soil enzyme activities under application of sewage sludge amendment. J Soil Sci Plant Nutr 9(2):89–101

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bailey JE, Safir OR (1978) Effect of benomyl on soybean endomycorrhizae. Phytopathology 68:1810–1812

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108(7):1288–1293

    CAS  Google Scholar 

  • Bagyaraj DJ, Menge JA (1978) Interaction between a VA mycorrhiza and Azotobacter and their effects on the rhizosphere microflora and plant growth. New Phytol 80:567–573

    Article  Google Scholar 

  • Bagyaraj DJ, Chawla G (2012) Status and prospects for enhancing the uptake of antagonistic organisms for nematode management in India. NBAII Publication, Bangalore, pp 74–89

    Google Scholar 

  • Barrows JB, Roncadori RW (1977) Endomycorrhizal synthesis by Gigaspora margarita in poinsettia. Mycologia 69(6):1173–1184

    Article  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Femándcz C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Bhattacharya PM, Paul AK, Saha J, Chaudhuri S (2002) Changes in the root development pattern of bamboo and sweet orange plants upon arbuscular mycorrhization. Mycorrhiza News 14(1):15–18

    Google Scholar 

  • Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280

    Article  CAS  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescensA6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111(3):279–288

    Article  Google Scholar 

  • Bhale UN, Sawant VS, Bansode SA (2014) River sedimentary soils retort to biomass production of Soybean (Glycine max) and arbuscular mycorrhizal fungal (AMF) status. Int J Adv Lif Sci 6(5):510–515

    Google Scholar 

  • Bansode SA, Sawant VS, Bhale UN (2014) Biomass production of sunflower plant and pretense of Arbuscular Mycorrhizal Fungi (AMF) in newly renovated agricultural land. Flora and Fauna 20(2):191–195

    Google Scholar 

  • Bolan NS (1991) A critical review of the role of mycorrhizae fungi in the uptake of phosphorus byplants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bouwmeester HJ, Roux E, López-Ráez JA, Beeard G (2007) Rhizosphere communication of plants, parasitie plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil borne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carling DE, Roncadori RW, Hussey RS (1996) Interactions of arbuscular mycorrhizae, Meloidogynearenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9–13

    Article  Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoidsin roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43

    Article  CAS  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Carvalho L, Caçador I, Martins-Loução M (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285(1–2):161–169

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Chandra S, Khare V, Kehri HK (2007) Evaluation of Arbuscular Mycorrhizal Fungi against Macrophomina phaseolina causing dry root-rot of urd and mung bean. Indian Phytopathology 60(1):42–47

    Google Scholar 

  • Chaudhary KK, Kaul RK (2013) Efficacy of Pasteuria penetrans and various oil seed cakes in management of Meloidogyne incognita in Chilli pepper (Capsicum annuum L.). J Agr Sci Tech 15:617–626

    Google Scholar 

  • Clark RB (2002) Differences among mycorrhizal fungi for mineral uptake per root length of switch grass grown in acidic soil. J Plant Nutr 25(8):1753–1772

    Article  CAS  Google Scholar 

  • Douds DD, Nagahashi G (2000) Signalling and recognition events prior to colonisation of Rootsby arbuscular mycorrhizal Fungi. In: Podila G, Douds DD (eds) Current advances in mycorrhizae research. APS Press, Minnesota, pp 11–18

    Google Scholar 

  • Estrada-Luna AA, Davies FT Jr, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10:1–8

    Article  CAS  Google Scholar 

  • Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57(10):465–470

    Article  CAS  Google Scholar 

  • Feldman F, Boyle C (1998) Weed-mediated stability of arbuscular mycorrhizal fungi effectiveness in maize monocultures. J Appl Bot 73:1–5

    Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when non mycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. Public Libr Sci one 7(3):e33977

    CAS  Google Scholar 

  • Garcia VI, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Martin J, Fracchia S, Mujica MT, Godeas A, Ocampo JA (1998) Interaction between saprophytic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235–246

    Google Scholar 

  • Gerdemann J (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gerdemann JW (1974) Vesicula-arbuscular mycorrhiza. Academic Press, NY

    Google Scholar 

  • George S, Pillai GR, Pushpakomari R (1999) Influence of biofertilisers on productivity of Guinea grass intercropped in coconut gardens. Indian J Agron 43:622–627

    Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizae fungi: getting to the roots of symbiosis. The Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14

    Article  Google Scholar 

  • Hage-Ahmed K, Chobot V, Postl W, Voglgruber A, Hadacek F, Steinkellner S (2009) Alteration of plant metabolites and root exudate-mediated interactions by pathogenic and mycorrhizal fungi in tomato. international symposium “Root Research and Applications” (RootRAP), Boku–Vienna, Austria, 2–4 Sept, pp 1–4

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseaein banana. Plant Soil 196:27–35

    Article  CAS  Google Scholar 

  • Jallali BL, Chand H (1987) In: Mahadevan et al (eds) Proceedings of iSI Asian conference on Mycorrhizae at Madras, pp 209–214

    Google Scholar 

  • Jefwa J, Vanlauwe B, Coyne D, Van Asten P, Gaidashova S, Rurangwa E, Mwashasha M, Elsen A (2010) Benefits and potential use of Arbuscular Mycorrhizal Fungi (AMF) in banana and plantain (Musa spp.) systems in Africa. In: Dubois T et al (eds) Proceedings international conference on Banana & Plantain in Africa, Acta Hort, 879. ISHS, The Hague, pp 479–486

    Google Scholar 

  • Jeffries P, Barca JM (2012) Arbuscular Mycorrhiza-a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota. Springer, Berlín/Heidelberg, pp 51–75

    Google Scholar 

  • Johnson D, Leake JR, Read DJ (2006) Role of arbuscular mycorrhizal fungi in carbon and nutrient cycling in grassland. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 129–150

    Chapter  Google Scholar 

  • Jothi G, Babu RS, Rajendren G (2005) Biomanagement of nematodes by mycorrhiza – a review. Agric Rev 26(4):249–260

    Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174

    Article  Google Scholar 

  • Karagiannidis N, Bletsos F, Stavropoulos N (2002) Effect of Verticillium wilt (VerticilliumdahliaeKleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and egg plant seedlings. Sci Hortic 94:145–156

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan B, Jaleel CA, Changxing Z, Joe MM, Srimannarayan J, Deiveekasundaram M (2008) The effect of AM fungi and phosphorous level on the biomass yield and ajmalicine production in Catharanthus roseus. Eur Asia J BioSci 2(3):26–33

    CAS  Google Scholar 

  • Kasiamdarim RS, Smithm SE, Smith FA, Scott ES (2002) Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleateRhizoctonia and Rhizoctoniasolani on mung bean (Vigna radiata). Plant Soil 238:235–244

    Article  Google Scholar 

  • Kjøller R, Rosendahl S (1996) The Presence of the Arbuscular Mycorrhizal Fungus Glomus intraradices Influences Enzymatic Activities of the Root Pathogen Aphanomyces euteiches in Pea Roots. Mycorrhiza 6(6):487–491

    Google Scholar 

  • Kobra N, Jalil K, Youbert G (2011) Arbuscular mycorrhizal fungi and biological control of Verticillium wilted cotton plants. Arch Phytopathol Plant Protect 44(10):933–942

    Article  Google Scholar 

  • Krishna H, Das B, Attri BL, Grover M, Ahmed N (2010) Suppression of Botryosphaeria canker of apple by arbuscular mycorrhizal fungi. Crop Protect 29:1049–1054

    Article  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole H Jr (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc Am J 43:976–980

    Article  CAS  Google Scholar 

  • Larsen J, Bødker L (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytol 149:487–493

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by an abundance of arbuscular mycorrhizal fungi? a meta-analysis of studies published between 1988–2003. New Phytol 168:189–204

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn, and Fe bymycorrhizal maize (Zea mays L) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • López-Ráez JA, Charnikhova T, Femández I, Bouwrneester H, Pozo MJ (2011) Arbuscular mycorrhizal syrnbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  PubMed  CAS  Google Scholar 

  • Mader P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Article  Google Scholar 

  • Manjunath BA, Mohan R, Bagyaraj DJ (1981) Interaction between Beijerinckiamobilis, Aspergillusniger and Glomusfasciculatus and their effects on growth of onion. New Phytol 87:723–727

    Article  Google Scholar 

  • Matsubara YI, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374

    Article  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth–promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26(2):128–134

    Article  PubMed  Google Scholar 

  • McGonigle TP (1988) A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct Ecol 2:473–478

    Article  Google Scholar 

  • Momotaz R, Alam MM, Islam MN, Alam KM, Rahman MZ (2015) Management of the root-knot nematode of tomato by inoculation with Arbuscular Mycorrhizal Fungi. Int J Sustain Crop Prod 10(2):48–54

    Google Scholar 

  • Morovvat A, Ronaghi A, Zarei M, Emadi M, Heidarianpour MB, Gholami L (2012) Effect of arbuscular mycorrhiza fungi application on distribution of phosphorus forms in rhizosphere soils of sunflower (Helianthus annuus L.). Int J Agric Sci Res Technol 2(2):77–82

    Google Scholar 

  • Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51–58

    Article  Google Scholar 

  • Nagesh M, Reddy PP, Kumar MVV, Nagaraju BM (1999) Studies on correlation between Glomus fasciculatum spore density, root colonization and Meloidogyne incognita infection on Lycopersicon esculentum. J Plant Dis Protect 106:82–87

    Google Scholar 

  • Nedorost L, Pokluda R (2012) Effects of arbuscular Mycorrhizal fungi on tomato yield and nutrient uptake under different fertilization levels. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 60(8):181–186

    Article  Google Scholar 

  • Neeraj SK (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295

    Article  Google Scholar 

  • Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 85(1):37–50

    Article  PubMed  Google Scholar 

  • Ojha S, Chakraborty M, Chatterjee NC (2012) Influence of salicylic acid and Glomusfasciculatumon Fusarialwilt of tomato and brinjal. Arch Phytopathol Plant Protect 45(13):1599–1609

    Article  CAS  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5(10):1108–1116

    Google Scholar 

  • Othira JO, Omolo JO, Wachira FN, Onek LA (2012) Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L.) against witchweed (Striga hermonthica Del Benth) infestation. J Agric Biotechnol Sustain Dev 4(3):37–44

    Article  Google Scholar 

  • Ozgonen H, Akgul DS, Erkilic A (2010) The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by SclerotiumrolfsiiSacc. in peanut. Afr J Agric Res 5(2):128–132

    Google Scholar 

  • Pavkovsky RS, Bethlenlfalvay GJ, Paul EA (1986) Comparisons between P-fertilized and mycorrhizal plants. Crop Sci 26:151–156

    Article  Google Scholar 

  • Plenchette C (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359

    Article  PubMed  CAS  Google Scholar 

  • Ratti N, Gautam SP, Verma HN (2002) Impact of four Glomus species on the growth, oil content, P content and phosphatase activity of Vetiveria zizanioides. Indian Phytopathology 55(4):434–437

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rilling MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251–259

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Becerril F, Juárez-Vázquez LV, Hernández-Cervantes SC, Acevedo-Sandoval OA, Vela-Correa G, Cruz-Chávez E, Moreno-Espíndola IP, Esquivel-Herrera A, De León-González F (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Arch Environ Contam Toxicol 64(2):219–227

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R, Vassilev N, Azcon R (1999) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl Soil Ecol 11(1):9–15

    Article  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524

    Article  CAS  Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–653

    Google Scholar 

  • Sankaranarayanan C, Sundarababu R (2009) Reciprocal influence of Arbuscular Mycorrhizal Fungus and root knot nematode and interaction effects on Blackgram. Nematol Medit 37:197–202

    Google Scholar 

  • Sampo S, Nadia M, Simone C, Urnuberta D, Dominica B, Christina M, Graziella B (2012) Effect of two Am fungi on phytoplsama infection in the model plant Chrysantemum carinatum. Agric Food Sci 21:39–51

    Article  Google Scholar 

  • Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539–545

    Article  PubMed  CAS  Google Scholar 

  • Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Article  Google Scholar 

  • Shinde SK, Shinde BP, Patale SW (2013) The alleviation of salt stress by the activity of AM fungi in growth and productivity of onion (Allium cepa L.) plant. Int J Life Sci Farma Res 3(1):11–15

    Article  Google Scholar 

  • Smith SE, Read DJ (2002) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Tarafdar JC, Marschner H (1995) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173:97–102

    Article  CAS  Google Scholar 

  • Thingstrup I, Rubaek G, Sibbensen E, Jakobsen I (1999) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  Google Scholar 

  • Thompson JP (1994) Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissium L.) by improving P and Zn uptake. Soil Biol Biochem 26(9):1133–1143

    Article  CAS  Google Scholar 

  • Torres-Barragán A, Zavale-Tamejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum) under field conditions. Mycorrhiza 6:253–257

    Article  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Vaast P, Caswell-Chen EP, Zasoski RJ (1998) Influeences of a root-lesion nematode, Pratylenchus coffeae, and two arbuscular mycorrhizal fungi, Acaulospora mellea and Glomus clarumon coffee (Coffea Arabica L.). Biol Fertil Soils 26:130–135

    Article  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15(3):261–272

    Article  Google Scholar 

  • Vasanthakrishna M, Muthanna MB, Bagyaraj DJ (1994) Succession of vesicular arbuscular mycorrhizal fungi associated with Casuarina equisetifoliaL. Ann For 2:123–126

    Google Scholar 

  • Vivekanandan M, Fixen PE (1991) Cropping systems effects on Mycorrhizal colonization, early growth, and Phosphorus uptake. Soil Sci Soc Am J 55:136–140

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wright SF (2005) Management of Arbuscular Mycorrhizal Fungi. In: Zobel RW, Wright SF (eds) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Madison, pp 183–197

    Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63(6):1825–1829

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154

    Google Scholar 

  • Ziedan E, Sayed EI, Mostafa M, Sahab A (2011) Application of mycorrhizae for controlling root diseases of sesame. J Plant Protect Res 51(4):355–361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhale, U.N., Bansode, S.A., Singh, S. (2018). Multifactorial Role of Arbuscular Mycorrhizae in Agroecosystem. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_12

Download citation

Publish with us

Policies and ethics