Skip to main content

Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability

  • Chapter
  • First Online:
Legumes for Soil Health and Sustainable Management

Abstract

The demands of feeding a world population are expected to double by 2050. This is because 2.5 billion will be added to the urban population alone. This massive undertaking has posed many challenges toward agricultural productivity and increase in food quality, quantity, and production of protein-rich crops, but on the other hand, modern aggressive agricultural practices have rendered the current acreage of arable land and soil unsustainable to meet the demands of sustainable cropping systems. However, the beneficial role of legumes in cropping systems such as symbiotic nitrogen fixation, intercropping, and rotation of legumes with cereals offers credible potential for providing economically sustainable advantages for farming. The inherent capacity of legumes to form symbiotic associations with biological nitrogen-fixing (BNF) rhizobia and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF), i.e., symbiotic tripartism, further advocates the use of legumes as cover crops, increasing soil fertility, rhizospheric processes, and sustainable (food/oil) crop production. Furthermore, it is estimated that BNF of legumes contribute to five to seven times less greenhouse gas (GHG) emissions per unit area compared to other crops, in addition to estimates of total global BNF of 122 T gN/year (=million tons of N), while AMF play a critical role in global carbon cycle, with estimates of the amount of total C fixed to be up to 20% which is c. 5 T PgC/year (=billion tons of C). In view of this importance of symbiotic tripartism in natural and managed ecosystems, this chapter emphasizes the genetic and symbiotic feature(s) of legumes in large-scale community and global food security programs and soil sustainability and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMS:

Arbuscular mycorrhizal symbiosis

CSP:

Common SYM pathway

N:

Nitrogen

P:

Phosphorus

RNS:

Root nodule symbiosis

SOM:

Soil organic matter

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, Zulyniak MA, Weis T, Bernstein AM, Krauss RM, Kromhout D, Jenkins DJA, Malik V, Martinez-Gonzalez MA, Mozaffarian D, Yusuf S, Willett WC, Popkin BM (2015) Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system. J Am Coll Cardiol 66:1590–1514

    Article  PubMed  PubMed Central  Google Scholar 

  • Anglade J, Medina MR, Billen G, Garnier J (2016) Organic market gardening around the Paris agglomeration: agro-environmental performance and capacity to meet urban requirements. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-6544-1

  • Bai B, Suri VK, Kumar A, Choudhary AK (2016) Influence of dual inoculation of AM fungi and Rhizobium on growth indices, production economics, and nutrient use efficiencies in garden pea (Pisum sativum L.). Commun Soil Sci Plant Anal 47:941–954

    Article  CAS  Google Scholar 

  • Beniston JW, Lal R(2012) Improving soil quality for urban agriculture in the north central U.S. in carbon sequestration in urban ecosystems, Lal R, Augustin B (eds). Springer, Dordrecht, pp 279–314

    Google Scholar 

  • Beniston JW, Lal R, Mercer KL (2016) Assessing and managing soil quality for urban agriculture in a degraded vacant lot soil. Land Degrad Develop 27:996–1006

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Beringer JE, Brewin N, Johnston AWB, Schulman HM, Hopwood DA (1979) The rhizogium-legume symbiosis. Proc R Soc Lond 204:219–233

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomex-Roldan V, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4: 1239–1247

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Sharma GD (2012) Effect of dual inoculation of arbuscular mycorrhiza and Rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Adv Microbiol 2:561–564

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  • Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–317

    Article  Google Scholar 

  • Brevik EC, Sauer TJ (2015) The past, present, and future of soils and human health studies. Soil 1:35–46

    Article  Google Scholar 

  • Brewin NJ (2010) Root nodules (Legume–Rhizobium Symbiosis). eLS. https://doi.org/10.1002/9780470015902.a0003720.pub2

  • Brown LK, George TS, Dupuy LX, White PJ (2013) A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann Bot 112:317–330

    Article  PubMed  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bucher M, Hause B, Krajinski F, Kuester F (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840

    Article  PubMed  CAS  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119–129

    Article  Google Scholar 

  • Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Cui Z, Vitousek PM, Cassman KG, Matson PA, Romheld V, Zhang F (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci 108:6399–6404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clarke VC, Loughlin PC, Day DA, Smith PMC (2014) Transport processes of the legume symbiosome membrane. Front Plant Sci 5:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. CRC Crit Rev Plant Sci 34:4–16

    Article  CAS  Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12:79–805

    Article  Google Scholar 

  • de Souza RG, da Silva DKA, de Mello CMA, Goto BT, da Silva FSB, Sampaino EVSB, Maia LC (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad Develop 24:147–155

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg res 39(4):590–594

    Google Scholar 

  • Ding X, Zhang S, Wang R, Li S, Liao X (2016) AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. J Plant Nutr 39:1915–1925

    Article  CAS  Google Scholar 

  • Endre G, Kerszt A, Kevei Z, Milhacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356–362

    Article  PubMed  CAS  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Kiers ET, Bueking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109:2666–2671

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112

    Article  PubMed  Google Scholar 

  • Franzini VI, Azcon R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense- related gene expression analysis. PLoS One 7:e33977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genre A, Russo G (2016) Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front Plant Sci 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Geurts R, Xiao TT, Reinhold-Hurek B (2016) What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci 21:199–208

    Article  PubMed  CAS  Google Scholar 

  • Giehl RFH, von Wiren N (2014) Root nutrient foraging. Plant Physiol 166:509–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah BW, Oldroyd GED (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Gobbato E (2015) Recent development in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P (2012) GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241

    Article  PubMed  CAS  Google Scholar 

  • Guissou T (2009) Contribution of arbuscular mycorrhizal fungi to growth and nutrient uptake by jujube and tamarind seedlings in a phosphate (P-) deficient soil. Afr J Microbiol Res 3:297–204

    CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  PubMed  CAS  Google Scholar 

  • Hartman K, van der Heijden MGA, Roussely-Provent V, Valser JC, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Holmer R, Rutten L, Kohlen W, van Velzen R, Geurts R (2017) Commonalities in symbiotic plant-microbe signaling. Adv Bot Res 82. ISSN 0065-2296

    Google Scholar 

  • Ianneta PP, Young M, Bachinger J, Bergkvist G, Doltra J, Lopez-Bellido RJ, Monti M, Pappa VA, Reckling M, Topp CF, Walker RL, Rees RM, Watson CA, James EK, Squire GR, Begg GS (2016) Comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation. Front Plant Sci 7:1700

    Google Scholar 

  • Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13

    Article  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Islam R, Reeder R (2014) No-till and conservation agriculture in the United States: an example from the David Brandt farm, Carroll, Ohio. Int Soil Water Conserv Res 2:97–07

    Article  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Kamel L, Keller-Pearson M, Roux C, Ane JM (2016) Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytol 213:531–536

    Article  PubMed  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Esben MHQ, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) Anucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur S, Aggarwal R, Lal R (2016) Assessment and mitigation of greenhouse gas emissions from ground water irrigation. Irrig and Drain 65:762–770

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Kouris-Blazos A, Belski R (2016) Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac J Clin Nutr 25:1–17

    PubMed  CAS  Google Scholar 

  • Lal R (2012) Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric Res 1:199–212

    Article  Google Scholar 

  • Lalitha S, Rajeshwaran K, Senthil kumar P, Kumar S (2011) Role of AM fungi and rhizobial inoculation for reclamation of phosphorus deficient soil. Asian J Plant Sci 10:227–232

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:574–594

    Article  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Liu C-W, Murray JD (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33

    Article  PubMed Central  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181–192

    Article  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • Marzban Z, Faryabi E, Torabian Z (2017) Effects of arbuscular mycorrhizal fungi and Rhizobium on ion content and root characteristics of green bean and maize under intercropping. Acta Agric Slov 109:79–88

    Article  Google Scholar 

  • Masclaux-Daubresse C, Daniele-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Matson PA, Vitousek PM (2006) Agricultural intensification: will land spared from farming be land spared for nature? Conserv Biol 20:709–710

    Article  PubMed  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2011) Plant nutrient functions and deficiency and toxicity symptoms. Nutrient management module no. 9, CCA 1.5 NM CEU

    Google Scholar 

  • McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017) Phosphate solubilizing microorganisms, principles and application of microphostechnology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena RS, Vijayakumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere. A Rev Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mendes LW, Kuramee EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizalfungiandrhizobium facilitatenitrogenuptakeandtransfer insoybean/maizeintercropping system. Front Plant Sci 6:339

    PubMed  PubMed Central  Google Scholar 

  • Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Messina M (2010) A brief historical overview of the past two decades of soy and isoflavone research. J Nutr 140:1350S–4S

    Article  PubMed  CAS  Google Scholar 

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439S–450S

    Article  PubMed  CAS  Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine MA (2012) Arbuscular mycorrhiza maintains nodule function during external NH4+ supply in Phaseolus vulgaris (L.). Mycorrhiza 22:237–245

    Article  PubMed  CAS  Google Scholar 

  • Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16:473–479

    Article  PubMed  CAS  Google Scholar 

  • Needelman BA (2013) What are soils? Nat Educ Knowl 4:2

    Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21:243–255

    Article  PubMed  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross- talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T (2017) The role of legume-rhizobium symbiosis in sustainable agriculture. In Sulieman S, Tran LSP (eds) Legume nitrogen fixation in soils with low phosphorus availability. https://doi.org/10.1007/978-3-319-55729-8_1

    Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RS, Carvalho P, Marques G, Ferreira L, Vosatka M, Freitas H (2017) Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J Sci Food Agric. DOI https://doi.org/10.1002/jsfa.8201

  • Ordonez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parikh SJ, James BR (2012) Soil: the foundation of agriculture. Nat Educ Knowl 3:2

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Obersteiner M, Janssens IA (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934

    Article  PubMed  CAS  Google Scholar 

  • Phillipot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  PubMed  CAS  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Diaz M, Canciani W, Abalo M, Alloat J, Gonzalez-Anta G, Vasquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren C-G, Kong C-C, Bian B, Liu W, Li Y, Liou Y-M, Zhi-Hong X (2017) Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int J Phytoremed. https://doi.org/10.1080/15226514.2017.1284755

  • Ribaudo M, Delgado J, Hansen L, Livingston M, Mosheim R, Williamson J (2011) Nitrogen in agricultural systems: implications for conservation policy. Economic Research Service/USDA/ERR-127

    Google Scholar 

  • Rodak BW, Freitas DS, Bamberg SM, Carneiro MAC, Guilherme LRG (2017) X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi. J Microbiol Methods 132:14–20

    Article  PubMed  CAS  Google Scholar 

  • Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. CRC Crit Rev Plant Sci 34:2–3

    Article  Google Scholar 

  • Saito K, Yoshikawa M, Yano K, Miwa H, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto K, Ogiwara N, Kaji T (2013) Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biol Fertil Soils 49:1141–1152

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 11:447–453

    Article  Google Scholar 

  • Scheublin TA, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla A, Kumar A, Chaturvedi OP, Nagori T, Kumar N, Gupta A (2017) Efficacy of rhizobial and phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi to ameliorate shade response on six pulse crops. Agrofor Syst. https://doi.org/10.1007/s10457-017-0070-0

  • Siddique KHM, Johansen C, Turner NC, Jeuffroy MH, Gan Y, Alghamdi SS (2012) Agron Sustain Dev 32:45–64

    Article  Google Scholar 

  • Siebers M, Brands M, Wewer V, Duan Y, Hoelzl G, Doermann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta 1861:1379–1395

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  PubMed  CAS  Google Scholar 

  • Smith, Read (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, Boston. ISBN: 9780123705266

    Google Scholar 

  • Sprent J (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  PubMed  CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2

    Article  Google Scholar 

  • Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Sulieman S, Tran L-SP (2015) Legume nitrogen fixation in a changing environment. https://doi.org/10.1007/978-3-319-06212-9_1

  • Syntikov DM (2013) How to increase the productivity of the soybean- rhizobial symbiosis. In: A comprehensive survey of international soybean research – genetics, physiology, agronomy and nitrogen relationships. https://doi.org/10.5772/51563

  • Tajini F, Trabelsi M, Drevon J-J (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163

    Article  PubMed  CAS  Google Scholar 

  • Tavasolee A, Aliasgarzard N, SalehiJoulani G, Mardi M, Asgharzadeh A (2013) Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10:7585–7591

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Kawasaki S, Stougaard J (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • UNEP and WHRC (2007) Reactive nitrogen in the environment: too much or too little of a good thing? (The United Nations environment program, 2007); www.unep.org/pdf/dtie/Reactive_Nitrogen.pdf

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062

    Article  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Sci 242:98–07

    Article  PubMed  CAS  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumar V, Liebisch G, Buer B, Xue L, Gerlach N, Blau S, Schmitz J, Bucher M (2016) Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicusGlomusintraradices mycorrhizal symbiosis. Plant Cell Environ 39:393–315

    Article  PubMed  CAS  Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3:15

    Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao X (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-Y, Hsu P-K, Tsay Y-F (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittwer RA, Dorn B, Jossi W, van der Heijden MG (2017) Cover crops support ecological intensification of arable cropping systems. Sci Rep 7:41911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue L, Cui H, Buer B, Vijayakumar V, Delaux P-M, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaseen T, Ali K, Munsif F, Rab A, Ahmad M, Israr M, Bariach AK (2016) Influence of arbuscular mycorrhizal fungi, Rhizobium inoculation and rock phosphate on growth and quality of lentil. Pak J Bot 48:2101–2107

    CAS  Google Scholar 

  • Yasmeen T, Hameed S, Tariq M, Ali S (2012) Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiata. Acta Physiol Plant 34:1519–1528

    Article  CAS  Google Scholar 

  • Yoshida S, Parniske M (2005) Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J Biol Chem 280:9203–9209

    Article  PubMed  CAS  Google Scholar 

  • Zezza A, Tasciotti L (2010) Urban agriculture, poverty and food security: empirical evidence from a sample of developing countries. Food Policy 35:265–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayakumar, V. (2018). Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_6

Download citation

Publish with us

Policies and ethics