Skip to main content

Leguminous Trees an Innovative Tool for Soil Sustainability

  • Chapter
  • First Online:

Abstract

World food production is to some extent dependent upon biological nitrogen (N) fixation (about 100 million tons per year globally) in agroecosystem. Legumes reflect multidimensional activity towards developing soil nutrient pool and improving soil fertility. Increased level of CO2 (0.04%) associated with addition of N in a system is dependent upon various abiotic (temperature, humidity, soil) and biotic (species interaction, resource partitioning, biotic interference) factors. As a consequence there may be a significant level of variation in the N cycle in different ecosystems. In comparison with cropland soils of Europe and North America, soils of India are strongly depleted of their N reserves. Such deficiency can be mitigated through the inherent N-fixing ability and improvement of soil condition by leguminous tree species. Such approaches also promote proper enhancement of forest floor biodiversity in terms of various living communities. Leguminous trees are often found to be a key instrument towards combating climate change due to their higher C sequestration potential and wide ecological amplitude at various conditions. Such potentiality often hampers the flourishment of legume trees in nature due to over exploitation and improper regeneration. Community-based natural resource management practices are the suitable solution for these problems. Exploration of areas with higher density of legumes and management of legumes in captivity and under natural condition needs to be prioritized. In this context appropriate research work should be aimed towards proper exploration of potentiality among leguminous vegetation in fixing atmospheric N. Wider application of such species has become a thrust area of research in modern science perspectives. All these issues are periodically reviewed with research-oriented database for the benefits of soil sustainability. The present chapter deals with the beneficial and multipurpose role of leguminous tree species towards soil sustainability and plant growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMF:

Arbuscular mycorrhizae fungi

BNF:

Biological nitrogen fixation

C:

Carbon

CO2 :

Carbon dioxide

FACE:

Free-air CO2 enrichment

FAO:

Food and Agricultural Organization

GHG:

Greenhouse gases

INM:

Integrated nutrient management

N:

Nitrogen

NFP:

Nitrogen-fixing potential

NFT:

Nitrogen-fixing trees

OM:

Organic matter

R&D:

Research and development

SCP:

Soil carbon pool

SNF:

Symbiotic nitrogen fixation

SNP:

Soil nitrogen pool

SOCP:

Soil organic carbon pool

SOM:

Soil organic matter

References

  • Agamuthu P, Broughton WJ (1985) Nutrient cycling within the developing oil palm-legume ecosystem. Agric Ecosyst Environ 13:111–123

    Article  CAS  Google Scholar 

  • Albrecht H (2003) Suitability of arable weeds as indicator organisms to evaluate species conservation effects of management in agricultural ecosystems. Agric Ecosyst Environ 98:201–211

    Article  Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae, a source book of characteristics, use and nodulation. The University of Wisconsin Press, Madison

    Google Scholar 

  • Apolinário VXO, Dubeux JCB, Mello ACL Jr, Vendramini JMB, Lira MA, Santos MVF, Muir JP (2016) Decomposition of arboreal legume fractions in a silvipastoral system. Crop Sci 56:1356–1363

    Article  CAS  Google Scholar 

  • Balieiro FC, Pereira MG, Alves BJR, Resende AS, Franco AA (2008) Soil carbon and nitrogen in pasture soil reforested with eucalyptus and guachapele. Rev Bras Ci Solo 32:1253–1260

    Article  CAS  Google Scholar 

  • Banning NC, Grant CD, Jones DL, Murphy DV (2008) Recovery of soil organic matter, organic matter turnover and nitrogen cycling a post-mining rehabilitation chronosequence. Soil Biol Biochem 40:2021–2031

    Article  CAS  Google Scholar 

  • Bargali K (2011) Screening of leguminous plants for VAM association and their role in restoration of degraded lands. J Am Sci 7(1):7–11

    Google Scholar 

  • Bargali K (2016) Leguminous plants of Kumaun Himalaya: diversity, distribution, threats and management. In: Chand R, Leimgruber W (eds) Globalization and marginalization in mountain regions, perspectives on geographical marginality 1, pp 199–204. https://doi.org/10.1007/978-3-319-32649-8-15

    Chapter  Google Scholar 

  • Bargali K, Bargali SS (2009) Acacia nilotica: a multipurpose leguminous plant. Nat Sci 7(4):11–19

    Google Scholar 

  • Barth RC, Klemmedson JO (1982) Amount and distribution of dry matter, nitrogen and organic carbon in soil-plant systems of mesquite and Palo Verde. J Range Manag 35:412–418

    Article  Google Scholar 

  • Beer J (1988) Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agrofor Syst 7:103–114

    Article  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Berntson GM (1994) Modeling root architecture-are there tradeoffs between efficiency and potential of resource acquisition. New Phytol 127:483–493

    Article  Google Scholar 

  • Berntson GM, Bazzaz FA (1996) The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae): implications for root dynamics in elevated CO2. Am J Bot 83:608–616

    Article  Google Scholar 

  • Bhagat PK, Dash D, Raj A, Jhariya MK (2014) Effect of rhizobium inoculation on growth and biomass accumulation in Leucaena leucocephala. Ecoscan (Spec Issues Published Elsevier) V:65–74

    Google Scholar 

  • Bilalis D, Papastylianou P, Konstantas A, Patsiali S, Karkanis A, Efthimiadou A (2010) Weed-suppressive effects of maize-legume intercropping inorganic farming. Int J Pest Manage 56:173–181

    Article  Google Scholar 

  • Bilyaminu H, Wani AM (2016) Carbon sequestration potential of different tree species in Allahabad, Uttar Pradesh. Int J Farm Sci 6(2):153–158

    Google Scholar 

  • Binkley D, Menyailo O (eds) (2005) Tree species effects on soils: implication for global change. NATO Sci IV: Earth Environ Sci 55:155–164

    Google Scholar 

  • Birkhofer K, Diekoetter T, Boch S, Fischer M, Mueller J, Socher S, Wolters V (2011) Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol Biochem 43:2200–2207

    Article  CAS  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance method to quantify biological nitrogen fixation in woody perennials. Nutr Cycl Agroecosyst 57:235–270

    Article  Google Scholar 

  • Boddey RM, Alves BJR, Soares LHDB, Jantalia C, Urquiaga S (2009) Biological nitrogen fixation and the mitigation of greenhouse gas emissions. In: Merich DW, Krishnan HB (eds) Nitrogen fixation in crop production. ASA-CSSA-SSSA, Madison, pp 387–413

    Google Scholar 

  • Boddey RM, Jantalia CP, Conceicao PC, Zanatta JA, Bayer C, Mielnizuk J, Dieckow J, Santos HP, Denardin JE, Aita C, Giacomini SJ, Alves BJR, Urquiaga S (2010) Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture in southern Brazil. Glob Chang Biol 16:784–795

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Bond G, Mackintosh AH (1975) Diurnal changes in nitrogen-fixation in root nodules of Casuarina. Proc R Soc Lond B-Biol Sci 192:1–12

    Article  CAS  Google Scholar 

  • Boring LR, Swank WT (1984a) Symbiotic nitrogen-fixation in regenerating black locust (Robinia pseudoacacia L.) stands. For Sci 30:528–537

    Google Scholar 

  • Boring LR, Swank WT (1984b) The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749–766

    Article  Google Scholar 

  • Bullock JM, Pywell RF, Burke MJ, Walker KJ (2001) Restoration of biodiversity enhances agricultural production. Ecol Lett 4:185–189

    Article  Google Scholar 

  • Cabrerizo PM, Gonzalez EM, Aparicio-Tejo PM, Arrese-Igor C (2001) Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol Plant 113:33–40

    Article  CAS  Google Scholar 

  • Cadisch G, Oliveira OC, de Cantarutti R, Carvalho E, Urquiaga S (1998) The role of legume quality in soil carbon dynamics in savannah ecosystems. In: Bergstrom I, Kirchmann H (eds) Carbon and nutrient dynamics in natural and agricultural tropical ecosystems. CAB International, Wallingford

    Google Scholar 

  • Caetano S, Currat M, Pennington RT, Prado DE, Excoffier L, Naciri Y (2012) Recent colonization of the Galapagos by the tree Geoffroea spinosa Jacq. (Leguminosae). Mol Ecol 21:2743–2760

    Article  PubMed  CAS  Google Scholar 

  • Cantarutti RB, Tarre R, Macedo R, Cadisch G, de Rezende CP, Pereira JM, Braga JM, Gomide JA, Ferreira E, BJR A, Urquiaga S, Boddey RM (2002) The effect of grazing intensity and the presence of a forage legume on nitrogen dynamics in Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. Nutr Cycl Agroecosyst 64:257–271

    Article  CAS  Google Scholar 

  • Chaneton EJ, Mazia CN, Machera M, Uchitel A, Ghersa CM (2004) Establishment of Honey Locust (Gleditsia triacanthos) in burned Pampean grasslands. Weed Technol 18:1325–1329

    Article  Google Scholar 

  • Costa GS, Franco AA, Damasceno RN, de Faria SM (2004) Aporte de nutrientes pela serapilheira em uma área degradada e revegetada com leguminosas arbóreas. Rev Bras Ci Solo 28:919–927

    Article  CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Article  Google Scholar 

  • Crush JR (1993) Hydrogen evolution from root-nodules of Trifolium repens and Medicago sativa plants grown under elevated atmospheric CO2. N Z J Agric Res 36:177–183

    Article  CAS  Google Scholar 

  • Dakora FD, Keya SO (1997) Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. J Soil Biol Biochem 29:809–817

    Article  CAS  Google Scholar 

  • Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen-fixation in trees in agroecosystems. Plant Soil 141:177–196

    Article  CAS  Google Scholar 

  • Das I, Katiyar P, Raj A (2014) Effects of temperature and relative humidity on ethephon induced gum exudation in Acacia nilotica. Asian J Multidiscip Stud 2(10):114–116

    Google Scholar 

  • Dashora K (2011) Nitrogen yielding plants: the pioneers of agriculture with a multipurpose. Am-Eurasian J Agron 4(2):34–37

    Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

  • Deka M, Wani AM, Hussain M (2016) Assessment of carbon sequestration of different trees species grown under agroforestry system. J Adv Environ Sci 1(4):149–153

    Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg Res 39(4):590–594

    Google Scholar 

  • Dhruw SK, Singh L, Singh AK (2009) Storage and sequestration of carbon by leguminous and non-leguminous trees on red lateritic soil of Chhattisgarh. Indian For 135(4):531–538

    CAS  Google Scholar 

  • Dixon ROD, Wheeler CT (1983) Biochemical, physiological and environmental aspects of symbiotic nitrogenN fixation. In: Gordon JC, Wheeler CT (eds) Biological nitrogen fixation in forest ecosystems: foundations and applications. Nijhoff/Junk Publishers, The Hague, pp 107–171

    Chapter  Google Scholar 

  • Dommergues YR (1963) Evaluation du taux de fixation de l’azote dans un sol dunaire reboisé en filao (Casuarina equisetifolia). Agrochimica 7:335–340

    CAS  Google Scholar 

  • Dommergues YR, Duhoux E, Diem HG (1999) In: Ganry F (ed) Les arbres fixateurs d’azote. Caractéristiques fondamentales et role dans l’aménagement des méditerranéens et tropicaux. CIRAD/Editions Espaces 34/FAO/IRD, Montpellier, p 499

    Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonlo M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396(6708):262–265

    Article  CAS  Google Scholar 

  • Drury CF, Stone JA, Findlay WI (1991) Microbial biomass and soil structure associated with corn, grasses and legumes. Soil Sci Soc Am J 55:805–811

    Article  Google Scholar 

  • Dubeux JCB Jr, Sollenberger LE, Mathews BW, Scholberg JM, Santos HQ (2007) Nutrient cycling in warm-climate grasslands. Crop Sci 47:915–928

    Article  CAS  Google Scholar 

  • Dumanski J, Desjardins RL, Tarnocai C, Moreal C, Gregorich EG, Kirkwood V, Campbell CA (1998) Possibilities for future carbon sequestration in Canadian agriculture in relation to land use changes. J Clim Res 40(1):81–103

    CAS  Google Scholar 

  • Dupuy N, Dreyfus BL (1992) Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Appl Environ Microbiol 58:2415–2419

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc R Soc B Biol Sci 274:871–876

    Article  Google Scholar 

  • Felker P (1998) The value of mesquite for the rural southwest: fine lumber and soil improvement. J For 96:16–21

    Google Scholar 

  • Fisher CE (1977) Mesquite and modern man in southwestern North America. In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems. US/IBP Synthesis Series 4. Dowdon, Hutchison and Ross, Stroudsburg, p 250

    Google Scholar 

  • Fox RH, Myers RJK, e Vallis I (1990) The nitrogen mineralization rate of legumes residues in soil as influenced by polyphenol, lignin and nitrogen contents. Plant Soil 129:251–259

    Article  CAS  Google Scholar 

  • Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29(5/6):897–903

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Galiana A, Bouillet JP, Ganry F (2004) The importance of biological nitrogen fixation by trees in agroforestry. In: Serraj R (ed) Symbiotic nitrogen fixation: prospects for enhanced application in tropical agriculture. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 185–199

    Google Scholar 

  • Ganry F, Dommergues YR (1995) Arbres fixateurs d’azote: champ ouvert pour la recherche. Agric Dev 7:38–55

    Google Scholar 

  • Ganry F, Feller C, Harmand JM, Guibert H (2001) Management of soil organic matter in semiarid Africa for annual cropping systems. Nutr Cycl Agroecosyst 61:105–118

    Article  Google Scholar 

  • Garg VK, Jam RK (1992) Influence of fuelwood trees on sodic soils. Can J For Res 22:729–735

    Article  Google Scholar 

  • Gathumbi SM, Cadisch G, Giller KE (2002) 15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biol Biochem 34:1059–1071

    Article  CAS  Google Scholar 

  • Gea-Izquierdo G, Montero G, Canellas I (2009) Changes in limiting resources determine spatio-temporal variability in tree-grass interactions. Agrofor Syst 76:375–387

    Article  Google Scholar 

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Gibson AH (1976) Recovery and compensation by nodulated legumes to environmental stress. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London

    Google Scholar 

  • Giller KE, Wilson KJ (1991) Nitrogen fixation in tropical cropping systems. CAB International, Wallingford, p 313

    Google Scholar 

  • Handayanto E, Cadisch G, Giller KE (1995) Manipulation of quality and mineralization of tropical legume tree prunings by varying nitrogen supply. Plant Soil 176:149–160

    Article  CAS  Google Scholar 

  • Hardarson G, Danso SKA, Zapata F (1987) Biological nitrogen fixation in field crops. In: Christie BR (ed) Handbook of plant science in agriculture. CRC Press, Boca Raton, pp 165–192

    Google Scholar 

  • Hartwig UA, Luscher A, Daepp M, Blum H, Soussana JF, Nosberger J (2000) Due to symbiotic N2 fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertile, mixed grassland. Plant Soil 224:43–50

    Article  CAS  Google Scholar 

  • Hensley DL, Carpenter PL (1979) Effect of temperature on N2 fixation (C2H2 reduction) by nodules of legume and actinomycete-nodulated woody species. Bot Gaz 140:S58–S64

    Article  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hogberg P, Kvarnstrom M (1982) Nitrogen fixation by the woody legume Leucaena leucocephala in Tanzania. Plant Soil 66:21–28

    Article  Google Scholar 

  • Holtham DAL, Matthews GP, Scholefield D (2007) Measurement and simulation of void structure and hydraulic changes caused by root-induced soil structuring under white clover compared to ryegrass. Geoderma 142:142–151

    Article  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas-exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    Article  CAS  Google Scholar 

  • Husain T, Kapoor SL (1990) Enumeration of legumes in India (indigenous and introduced). National Botanical Research Institute, Lucknow

    Google Scholar 

  • IPCC (2014) Climate change 2014, mitigation of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RB, Reynolds HL (1996) Nitrate and ammonium uptake for single- and mixed species communities grown at elevated CO2. Oecologia 105:74–80

    Article  PubMed  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. Rev Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Jhariya MK, Yadav DK (2017) Invasive alien species: challenges, threats and management. In: Rawat SK, Narain S (eds) Agriculture technology for sustaining rural growth. Biotech Books, New Delhi, pp 263–285. ISBN:978-81-7622-381-2

    Google Scholar 

  • Jhariya MK, Bargali SS, Swamy SL, Kittur B, Bargali K, Pawar GV (2014) Impact of forest fire on biomass and carbon storage pattern of tropical deciduous forests in Bhoramdeo Wildlife Sanctuary, Chhattisgarh. Int J Ecol Environ Sci 40(1):57–74

    Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, pp 237–257. https://doi.org/10.5772/60841. ISBN:978-953-51-2175-6, 286 pages

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvopastoral systems on a sodic soil in northwestern India. Agrofor Syst 54:21–29

    Article  Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81(12):3267–3273

    Article  Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of CNPS ratios in Australian and international soils. Geoderma 163:197–208

    Article  CAS  Google Scholar 

  • Knops JMH, Tilman D (2000) Dynamics of soil carbon and nitrogen accumulation for 61 years after agricultural abandonment. Ecology 81:88–98

    Article  Google Scholar 

  • Kumar A, Dash D, Jhariya MK (2013) Impact of Rhizobium on growth, biomass accumulation and nodulation in Dalbergia sissoo seedlings. Bioscan 8(2):553–560

    Google Scholar 

  • Kumar A, Dash D, Jhariya MK (2014) Influence of Rhizobium inoculation on N, P and K content in Dalbergia sissoo Roxb. Ecol Environ Conserv 20(3):1059–1065

    Google Scholar 

  • Kumar S, Sheoran S, Kumar SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Progress Res, An Int J 11:6243–6246

    Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    Article  PubMed  CAS  Google Scholar 

  • Lane A, Jarvis A (2007) Change in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. Paper presented at ICRISAT/CGIAR 35th anniversary symposium, climate-proofing innovation for poverty reduction and food security. 22–24 Nov. CCRISAT, Patancheru

    Google Scholar 

  • Lee TD, Tjoelker MG, Reich PB, Russelle MP (2003) Contrasting growth response of an N2-fixing and non-fixing forb to elevated CO2: dependence on soil N supply. Plant Soil 255:475–486

    Article  CAS  Google Scholar 

  • Lehmann J, da Silva Jr JP, Trujillo L, Uguen K (2000) Legume cover crops and nutrient cycling in tropical fruit tree production. Acta Hortic 531:65–72

    Article  Google Scholar 

  • Lewis JP, Noetinger S, Prado DE, Barberis IM (2009) Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodivers Conserv 18:3615–3628

    Article  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luken JO, Fonda RW (1983) Nitrogen accumulation in a chronosequence of red alder communities along the Hoh River, Olympic National Park, Washington. Can J For Res Rev Can De Rech Forestiere 13:1228–1237

    Article  CAS  Google Scholar 

  • Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol Evol 27:19–26

    Article  PubMed  Google Scholar 

  • Macedo MO, Resende AS, Garcia PC, Boddey RM, Jantalia CP, Urquiaga S, Campello EFC, Franco AA (2008) Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For Ecol Manag 255:1516–1524

    Article  Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  PubMed  CAS  Google Scholar 

  • Marland G, Boden TA (1997) Trends: a compendium of data on global change. Carbon dioxide information analysis center. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593

    Article  Google Scholar 

  • Meena RS (2013) Response to different nutrient sources on green gram (Vigna radiata L.) productivity. Indian J Ecol 40(2):353–355

    Google Scholar 

  • Meena KK, Meena RS, Kumawat MS (2013a) Effect of sulphur and iron fertilization on yield attribute, yield, nutrient uptake of mungbean (Vigna radiata L.). Indian J Agri Sci 83(4):108–112

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena R, Meena SK (2013b) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015a) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015b) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agric 8(3):159–166

    Article  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015d) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena HR, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2017) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P., Indian Leg Res, Accepted in press

    Google Scholar 

  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, Scarascia-Mugnozza G (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth, and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Mulder EG, Lie TA, Houwers A (1977) The importance of legumes under temperate conditions. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation. IV. Agronomy and ecology. Wiley, New York, pp 221–242

    Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Ndoye I, Dreyfus B (1988) N2 fixation by Sesbania rostrate and Sesbania sesban estimated using 15N and total N difference methods. Soil Biol Biochem 20:209–213

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O'Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  PubMed  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Luscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150:251–260

    Article  Google Scholar 

  • Pennington RT, Ratter JA, Lewis GP (2006) An overview of the plant diversity, biogeography and conservation of Neotropical savannas and seasonally dry forests. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. CRC Press, Florida, pp 1–29. https://doi.org/10.1201/9781420004496.ch1

    Chapter  Google Scholar 

  • Peoples MB, Brockwell J, Hunt JR, Swan AD, Watson L, Hayes RC, Li GD, Hackney B, Nuttall JG, Davies SL, Fillery IRP (2012) Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop Pasture Sci 63:759–786

    Article  CAS  Google Scholar 

  • Permar TA, Fisher RF (1983) Nitrogen-fixation and accretion by wax myrtle (Myrica cerifera) in slash pine (Pinus elliottii) plantations. For Ecol Manag 5:39–46

    Article  CAS  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  PubMed  Google Scholar 

  • Prasad R, Saroj NK, Newaj R, Venkatesh A, Dhyani SK, Dhanai CS (2010) Atmospheric carbon capturing potential of some agroforestry trees for mitigation of warming effect and climate change. Indian J Agroforest 12(2):37–41

    Google Scholar 

  • Raj A (2015a) Evaluation of gummosis potential using various concentration of ethephon. M.Sc. thesis, I.G.K.V., Raipur (C.G.), pp 89

    Google Scholar 

  • Raj A (2015b) Gum exudation in Acacia nilotica: effects of temperature and relative humidity. In Proceedings of the national expo on assemblage of innovative ideas/work of post graduate agricultural research scholars, Agricultural College and Research Institute, Madurai (Tamil Nadu), pp 151

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2016) Bund based agroforestry using eucalyptus species: a review. Curr Agric Res J 4(2):148–158

    Article  Google Scholar 

  • Rao RR, Husain T (1993) Himalayan legumes: diversity and conservation. In: Dhar U (ed) Himalayan biodiversity: conservation strategies. Gyanodaya Prakashan, Nainital, pp 253–266

    Google Scholar 

  • Rao KPC, Verchot LV, Laarman J (2007) Adaptation to climate change through sustainable management and development of agroforestry systems. SAT eJournal. An Open Access Journal published by ICRISAT 4(1):1–30

    Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2006) Biodiversity patterns of the woody vegetation of the Brazilian cerrado. In: Pennington RT, Lewis GP, Rartter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. CRC Press, Florida, pp 31–66

    Google Scholar 

  • Reid WV (1992) Conserving life’s diversity. Environ Sci Technol 26:1090–1095

    Article  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    Article  CAS  Google Scholar 

  • Rind D, Suozzo R, Balachandran NK, Prather MJ (1990) Climate change and the middle atmosphere. 1. The doubled CO2 climate. J Atmos Sci 47:475–494

    Google Scholar 

  • Ross DJ, Saggar S, Tate KR, Feltham CW, Newton PCD (1996) Elevated CO2 effects on carbon and nitrogen cycling in grass/clover turves of a Psammaquent soil. Plant Soil 182:185–198

    Article  CAS  Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH, Shearer GB (1982) Seasonal dynamics of nitrogen cycling for a prosopis woodland in the Sonoran desert. Plant Soil 67:343–353

    Article  CAS  Google Scholar 

  • Ryle GJA, Powell CE, Timbrell MK, Gordon AJ (1989) Effect of temperature on nitrogenase activity in white clover. J Exp Bot 40:733–739

    Article  CAS  Google Scholar 

  • Sanginga N, Mulongoy K, Swift MJ (1992) Contribution of soil organisms to the sustainability and productivity of cropping systems in the tropics. Agric Ecosyst Environ 41:135–152

    Article  Google Scholar 

  • Sanjappa M (1991) Legumes of India. Bishen Singh Mahandra Pal Singh, Dehradun

    Google Scholar 

  • Santana MBM, Cabala-Rosand P (1982) Dynamics of nitrogen in a shaded cacao plantation. Plant Soil 67:271–281

    Article  CAS  Google Scholar 

  • Sarkinen T, Iganci JR, Linares-Palomino R, Simon MF, Prado D (2011) Forgotten forests-issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecol 11:27. https://doi.org/10.1186/1472-6785-11-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroth G, Krauss U, Gasparotto L, Duarte Aguilar JA, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241

    Article  Google Scholar 

  • Schwintzer CR (1983) Non-symbiotic and symbiotic nitrogen-fixation in a weakly minerotrophic peatland. Am J Bot 70:1071–1078

    Article  Google Scholar 

  • Serraj R, Sinclair TR (2003) Evidence that carbon dioxide enrichment alleviates ureide induced decline of nodule nitrogenase activity. Ann Bot 91:85–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serraj R, Allen LH, Sinclair TR (1999) Soybean leaf growth and gas exchange response to drought under carbon dioxide enrichment. Glob Chang Biol 5:283–291

    Article  Google Scholar 

  • Sheikh MA, Kumar M, Todaria NP (2015) Carbon sequestration potential of nitrogen fixing tree stands. For Stud Metsanduslikud Uurimused 62:39–47

    Article  Google Scholar 

  • Sierra J, Daudin D, Domenach AM, Nygren P, Desfontaines L (2007) Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: a comparison of the 15N leaf feeding and natural 15N abundance methods. Eur J Agron 27:178–186

    Article  CAS  Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145. ISBN:978-81-7622-375-1

    Google Scholar 

  • Siqueira JO (ed) (1996) Avanços em fundamentos e aplicação de micorrizas. Univ. Federtal de Lavras /DCS e DCF, Lavras, p 290

    Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Smith RG, Gross KL (2007) Assembly of weed communities along a crop diversity gradient. J Appl Ecol 44:1046–1056

    Article  Google Scholar 

  • Spehn EM, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira MC, Dimitrakopoulos PG, Finn JA, Jumpponen A, O’Donnovan G, Pereira JS, Schulze ED, Troumbis AY, Korner C (2002) The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98:205–218

    Article  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, Chichester. https://doi.org/10.1002/9781444316384

    Book  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4(2):1–13. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny, Website version 9, June 2008. Assessed on 15 Mar 2012

    Google Scholar 

  • Strain BR, Bazzaz FA (1983) Terrestrial plant communities. In: Lemon ER (ed) CO2 and plants. Westview, Boulder, pp 177–222

    Google Scholar 

  • Tarrant RF (1983) Nitrogen fixation in American forestry: research and application. In: Gordon JC, Wheeler CT (eds) Biological nitrogen fixation in Forest ecosystems: foundations and applications. M. Nijhoff/W. Junk, The Hague, pp 261–278

    Chapter  Google Scholar 

  • Tarre RM, Macedo R, Cantarutti RB, Resende CP, Pereira JM, Ferreira E, Alves BJR, Urquiaga S, Boddey RM (2001) The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic Forest region of the South of Bahia, Brazil. Plant Soil 234:15–26

    Article  CAS  Google Scholar 

  • Ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental- scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  CAS  Google Scholar 

  • Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361

    Article  CAS  Google Scholar 

  • Thomas RB, Bashkin MA, Richter DD (2000) Nitrogen inhibition of nodulation and N2 fixation of a tropical N2-fixing tree (Gliricidia sepium) grown in elevated atmospheric CO2. New Phytol 145:233–243

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tissue DT, Megonigal JP, Thomas RB (1997) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109:28–33

    Article  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crop Res 65:211–228

    Article  Google Scholar 

  • Van Cleve K, Viereck LA, Schlentor RL (1971) Accumulation of N in alder (Alnus) ecosystems near Fairbanks, Alaska. Arct Alp Res 3:101–114

    Article  Google Scholar 

  • Van Kessel C, Farrell RE, Roskoski JP, Keane KM (1995) Recycling of the naturally 15N occuring in an established stand of Leocaena leucocephala. Soil Biol Biochem 26:757–762

    Article  Google Scholar 

  • Vance CP (2002) Root-bacteria interactions: symbiotic nitrogen fixation. In: Waisel Y, Eshel A, Kafkati U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker Publishers, New York, pp 839–867

    Chapter  Google Scholar 

  • Varma D, Meena RS (2016) Mungbean yield and nutrient uptake performance in response of NPK and lime levels under acid soil in Vindhyan region, India. J App and Nat Sci 8(2):860–863

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017a) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Leg Res 40(3):542–545

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017b) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stu 5(2):384–389

    Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015b) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  PubMed  CAS  Google Scholar 

  • Waughman GJ (1977) Effect of temperature on nitrogenase activity. J Exp Bot 28:949–960

    Article  CAS  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56

    Article  PubMed  Google Scholar 

  • Wheeler CT (1991) Symbiotic nitrogen fixation. In: Raghavendra AS (ed) Proceedings of physiology of trees. Wiley, London, pp 111–135

    Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017a) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yunusa IAM, Mele PM, Rab MA, Schefe CR, Beverly CR (2002) Priming of soil structural and hydrological properties by native woody species, annual crops, and a permanent pasture. Austral J Soil Res 40:207–219

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Vogel CS, Holmes WE, Lussenhop J (2000) Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecol Appl 10:34–46

    Google Scholar 

  • Zakra N, Domenach AM, Sangare A (1996) Bilan positif de l’association cocotiers/acacias pour la restitution de l’azote, de la potasse et du magnésium. Plant Rech Dveloppement 3:39–48

    CAS  Google Scholar 

  • Zentner RP, Campbell CA, Biederebeck VO, Miller PR, Selles F, Fernandez MR (2001) In search of a suitable cropping system for the semi-arid Canadian prairies. J Sustain Agric 18(2–3):117–136

    Article  Google Scholar 

  • Zentner RP, Campbell CA, Biederebeck VO, Selles F, Lemke R, Jefferson PG, Gan Y (2004) Long-term assessment of management of an annual legume green manure crop for fallow replacement in the brown soil zone. Can J Plant Sci 83:475–482

    Google Scholar 

  • Zuzana M, Ward D (2002) Acacia trees as keystone species in Negev desert ecosystems. J Veg Sci 13:227–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jhariya, M.K., Banerjee, A., Yadav, D.K., Raj, A. (2018). Leguminous Trees an Innovative Tool for Soil Sustainability. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for Soil Health and Sustainable Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_10

Download citation

Publish with us

Policies and ethics