Skip to main content

Integration of Sulfides Enables Enhanced Full-Spectrum Solar Energy Absorption and Efficient Charge Separation

  • Chapter
  • First Online:
  • 514 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The full harvest of solar energy by semiconductor in light conversion requires such a material to simultaneously absorb diverse spectrum ranges of solar radiation and collect photo-generated electrons and holes separately. Through colloidal chemical transformation, we for the first time integrate ZnS, CdS and Cu2-xS semiconductor sulfides one by one in a single nanocrystal, synthesizing a unique ternary multi-node sheath ZnS-CdS-Cu2-xS heteronanorod so as to realize full-spectrum absorption of solar energy. Here the localized surface plasmon resonance (LSPR) of nonstoichiometric copper sulfide Cu2-xS nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunction between Cu2-xS and CdS forms staggered gaps, as verified by first-principles simulations. Such band alignment enables well-steered photo-generated carriers flow for electron-hole separation in the ternary system and hence efficient solar energy conversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)

    Article  Google Scholar 

  2. Zhang, Z.C., Xu, B., Wang, X.: Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014)

    Article  Google Scholar 

  3. Zhang, P., Wang, T., Gong, J.L.: Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015)

    Article  Google Scholar 

  4. Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P.: Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011)

    Article  Google Scholar 

  5. Mashford, B.S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulovic, V., Bawendi, M., Coe-Sullivan, S.: High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013)

    Article  Google Scholar 

  6. Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)

    Article  Google Scholar 

  7. Gao, W., Lee, H.K., Hobley, J., Liu, T., Phang, I.Y., Ling, X.Y.: Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. Angew. Chem. Int. Ed. 54, 3993–3996 (2015)

    Article  Google Scholar 

  8. Sun, X., Wang, C., Gao, M., Hu, A., Liu, Z. (2015) Drug delivery: remotely controlled red blood cell carriers for cancer targeting and near‐infrared light–triggered drug release in combined photothermal–chemotherapy. Adv. Funct. Mater. 25, 2480

    Google Scholar 

  9. Cho, S., Lee, M.J., Kim, M.S., Lee, S., Kim, Y.K., Lee, D.H., Lee, C.W., Cho, K.H., Chung, J.H.: Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J. Dermatol. Sci. 50, 123–133 (2008)

    Article  Google Scholar 

  10. Cui, J., Li, Y., Liu, L., Chen, L., Xu, J., Ma, J., Fang, G., Zhu, E., Wu, H., Zhao, L.: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 15, 6295–6301 (2015)

    Article  Google Scholar 

  11. Capasso, F.: Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987)

    Article  Google Scholar 

  12. Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)

    Article  Google Scholar 

  13. Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.-J., Zeng, Z., Yan, Q., Zhang, H.: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1177 (2012)

    Article  Google Scholar 

  14. Gao, M.R., Xu, Y.F., Jiang, J., Yu, S.H.: Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986–3017 (2013)

    Article  Google Scholar 

  15. Wu, X.J., Huang, X., Qi, X., Li, H., Li, B., Zhang, H.: Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties. Angew. Chem. Int. Ed. 53, 8929–8933 (2014)

    Article  Google Scholar 

  16. Jia, G., Banin, U.: A general strategy for synthesizing colloidal semiconductor zinc chalcogenide quantum rods. J. Am. Chem. Soc. 136, 11121–11127 (2014)

    Article  Google Scholar 

  17. Wu, X.J., Huang, X., Liu, J., Li, H., Yang, J., Li, B., Huang, W., Zhang, H.: Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. Angew. Chem. 126, 5183–5187 (2014)

    Article  Google Scholar 

  18. Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., Dubertret, B.: Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015)

    Article  Google Scholar 

  19. Li, J., Cushing, S.K., Zheng, P., Senty, T., Meng, F., Bristow, A.D., Manivannan, A., Wu, N.: Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 136, 8438–8449 (2014)

    Article  Google Scholar 

  20. Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W., Lian, T.: Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012)

    Article  Google Scholar 

  21. Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., Feldmann, J.: Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014)

    Article  Google Scholar 

  22. Wang, T., Zhuang, J., Lynch, J., Chen, O., Wang, Z., Wang, X., LaMontagne, D., Wu, H., Wang, Z., Cao, Y.C.: Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012)

    Article  Google Scholar 

  23. Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(Semiconductor/Metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)

    Article  Google Scholar 

  24. Zhao, Y., Pan, H., Lou, Y., Qiu, X., Zhu, J., Burda, C.: Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009)

    Article  Google Scholar 

  25. Hsu, S.-W., Bryks, W., Tao, A.R.: Effects of carrier density and shape on the localized surface plasmon resonances of Cu2-xS Nanodisks. Chem. Mater. 24, 3765–3771 (2012)

    Article  Google Scholar 

  26. Wang, X., Ke, Y., Pan, H., Ma, K., Xiao, Q., Yin, D., Wu, G., Swihart, M.T.: Cu-deficient plasmonic Cu2-xS nanoplate electrocatalysts for oxygen reduction. ACS Catal. 5, 2534–2540 (2015)

    Article  Google Scholar 

  27. Zhang, J., Tang, Y., Lee, K., Ouyang, M.: Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010)

    Article  Google Scholar 

  28. Wu, K., Zhu, H., Lian, T.: Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 48, 851–859 (2015)

    Article  Google Scholar 

  29. Wu, K., Chen, J., McBride, J.R., Lian, T.: Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015)

    Article  Google Scholar 

  30. Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Gimzewski, J.K., Aono, M.: Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22, 3606–3613 (2012)

    Article  Google Scholar 

  31. Bryks, W., Wette, M., Velez, N., Hsu, S.-W., Tao, A.R.: Supramolecular precursors for the synthesis of anisotropic Cu2S nanocrystals. J. Am. Chem. Soc. 136, 6175–6178 (2014)

    Article  Google Scholar 

  32. Wong, A.B., Brittman, S., Yu, Y., Dasgupta, N.P., Yang, P.D.: Core-shell CdS-Cu2S nanorod array solar cells. Nano Lett. 15, 4096–4101 (2015)

    Article  Google Scholar 

  33. Zhuang, T.-T., Liu, Y., Li, Y., Zhao, Y., Wu, L., Jiang, J., Yu, S.-H.: Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem. Int. Ed. 55, 6396–6400 (2016)

    Article  Google Scholar 

  34. Son, D.H., Hughes, S.M., Yin, Y., Alivisatos, A.P.: Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004)

    Article  Google Scholar 

  35. Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)

    Article  Google Scholar 

  36. Beberwyck, B.J., Surendranath, Y., Alivisatos, A.P.: Cation exchange: a versatile tool for nanomaterials synthesis. J. Phy. Chem. C 117, 19759–19770 (2013)

    Article  Google Scholar 

  37. Hu, M., Hartland, G.V.: Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J Phys. Chem. B 106, 7029–7033 (2002)

    Article  Google Scholar 

  38. Chen, G., Xu, C., Huang, X., Ye, J., Gu, L., Li, G., Tang, Z., Wu, B., Yang, H., Zhao, Z., Zhou, Z., Fu, G., Zheng, N. (2016) Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. advance online publication

    Google Scholar 

  39. Jen-La Plante, I., Teitelboim, A., Pinkas, I., Oron, D., Mokari, T.: Exciton quenching due to copper diffusion limits the photocatalytic activity of CdS/Cu2S nanorod heterostructures. J. Phys. Chem. Lett. 5, 590–596 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Tao Zhuang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, TT. (2018). Integration of Sulfides Enables Enhanced Full-Spectrum Solar Energy Absorption and Efficient Charge Separation. In: Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0188-9_5

Download citation

Publish with us

Policies and ethics