Skip to main content

One-Dimensional Colloidal Hetero-Nanomaterials with Programmed Semiconductor Morphology and Metal Location for Enhancing Solar Energy Conversion

  • Chapter
  • First Online:
  • 479 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Tuning the photo-induced properties of a material requires the construction of particular nanostructures with controlled composition and morphology. Structural reconstruction of colloidal nanocrystal provides a flexible and practical strategy for creating ingenious heteronanostructures of relevance for applications. Unique binary -[ZnS-CdS]-ZnS-[ZnS-CdS]-ZnS- heteronanorods were synthesized by integrating one ZnS nanorod with segmented CdS tetrahedron sheaths, which can be further constructed ternary multi-tetrahedron sheath -[ZnS-(CdS/Au)]-ZnS-[ZnS-(CdS/Au)]-ZnS- heteronanorods with Au nanoparticles only being grown on the vertexes and edges of CdS tetrahedron sheaths. The well-steered charge flow in designed ternary system can effectively facilitate the separation and transfer of interfacial photo-generated charge carriers, leading to the performance improvement in photo-electric/chemical conversion applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mann, S., Ozin, G.A.: Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996)

    Article  Google Scholar 

  2. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  Google Scholar 

  3. Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)

    Article  Google Scholar 

  4. Koenraad, P.M., Flatte, M.E.: Single dopants in semiconductors. Nat. Mater. 10, 91–100 (2011)

    Article  Google Scholar 

  5. Hakkinen, H.: The gold-sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012)

    Article  Google Scholar 

  6. Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  7. Liu, Y., Goebl, J., Yin, Y.: Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013)

    Article  Google Scholar 

  8. Yin, Y., Talapin, D.: The chemistry of functional nanomaterials. Chem. Soc. Rev. 42, 2484–2487 (2013)

    Article  Google Scholar 

  9. Brongersma, M.L., Cui, Y., Fan, S.: Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13, 451–460 (2014)

    Article  Google Scholar 

  10. Singh, G., Chan, H., Baskin, A., Gelman, E., Repnin, N., Kral, P., Klajn, R.: Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014)

    Article  Google Scholar 

  11. Costi, R., Saunders, A.E., Banin, U.: Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)

    Article  Google Scholar 

  12. Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)

    Article  Google Scholar 

  13. Qu, Y., Duan, X.: Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013)

    Article  Google Scholar 

  14. Gao, M.R., Liang, J.X., Zheng, Y.R., Xu, Y.F., Jiang, J., Gao, Q., Li, J., Yu, S.H.: An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 6, 5982–5989 (2015)

    Article  Google Scholar 

  15. Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., Huang, Y.: High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015)

    Article  Google Scholar 

  16. Jing, L., Kershaw, S.V., Kipp, T., Kalytchuk, S., Ding, K., Zeng, J., Jiao, M., Sun, X., Mews, A., Rogach, A.L., Gao, M.: Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots. J. Am. Chem. Soc. 137, 2073–2084 (2015)

    Article  Google Scholar 

  17. Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K.: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013)

    Article  Google Scholar 

  18. Hong, X.P., Kim, J., Shi, S.F., Zhang, Y., Jin, C.H., Sun, Y.H., Tongay, S., Wu, J.Q., Zhang, Y.F., Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)

    Article  Google Scholar 

  19. Xu, B., He, P., Liu, H., Wang, P., Zhou, G., Wang, X.: A 1D/2D Helical CdS/ZnIn2S4 Nano-Heterostructure. Angew. Chem. Int. Ed. 53, 2339–2343 (2014)

    Article  Google Scholar 

  20. Oh, N., Nam, S., Zhai, Y., Deshpande, K., Trefonas, P., Shim, M.: Double-heterojunction nanorods. Nat. Commun. 5, 3642 (2014)

    Google Scholar 

  21. Min, Y., Park, G., Kim, B., Giri, A., Zeng, J., Roh, J.W., Kim, S.I., Lee, K.H., Jeong, U.: Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9, 6843–6853 (2015)

    Article  Google Scholar 

  22. Xu, B., Li, H., Yang, H., Xiang, W., Zhou, G., Wu, Y., Wang, X.: Colloidal 2D-0D lateral nanoheterostructures: a case study of site-selective growth of CdS nanodots onto Bi2Se3 nanosheets. Nano Lett. 15, 4200–4205 (2015)

    Article  Google Scholar 

  23. Carbone, L., Cozzoli, P.D.: Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010)

    Article  Google Scholar 

  24. Beberwyck, B.J., Surendranath, Y., Alivisatos, A.P.: Cation exchange: a versatile tool for nanomaterials synthesis. J. Phy. Chem. C 117, 19759–19770 (2013)

    Article  Google Scholar 

  25. Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)

    Article  Google Scholar 

  26. Banin, U., Ben-Shahar, Y., Vinokurov, K.: Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem. Mater. 26, 97–110 (2014)

    Article  Google Scholar 

  27. Weng, L., Zhang, H., Govorov, A.O., Ouyang, M.: Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 5, 4792 (2014)

    Article  Google Scholar 

  28. Alemseghed, M.G., Ruberu, T.P.A., Vela, J.: Controlled fabrication of colloidal semiconductor-metal hybrid heterostructures: site selective metal photo deposition. Chem. Mater. 23, 3571–3579 (2011)

    Article  Google Scholar 

  29. Manna, G., Bose, R., Pradhan, N.: Photocatalytic Au-Bi2S3 heteronanostructures. Angew. Chem. Int. Ed. 53, 6743–6746 (2014)

    Article  Google Scholar 

  30. Yu, X., Shavel, A., An, X., Luo, Z., Ibanez, M., Cabot, A.: Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014)

    Article  Google Scholar 

  31. Han, S.-K., Gu, C., Gong, M., Yu, S.-H.: A trialkylphosphine-driven chemical transformation route to Ag- and Bi-based chalcogenides. J. Am. Chem. Soc. 137, 5390–5396 (2015)

    Article  Google Scholar 

  32. Buck, M.R., Bondi, J.F., Schaak, R.E.: A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 4, 37–44 (2012)

    Article  Google Scholar 

  33. Mark, A.G., Gibbs, J.G., Lee, T.-C., Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013)

    Article  Google Scholar 

  34. Ikeda, K., Kobayashi, Y., Negishi, Y., Seto, M., Iwasa, T., Nobusada, K., Tsukuda, T., Kojima, N.: Thiolate-induced structural reconstruction of gold clusters probed by 197Au Mössbauer spectroscopy. J. Am. Chem. Soc. 129, 7230–7231 (2007)

    Article  Google Scholar 

  35. Baranova, E., Fronzes, R., Garcia-Pino, A., Van Gerven, N., Papapostolou, D., Pehau-Arnaudet, G., Pardon, E., Steyaert, J., Howorka, S., Remaut, H.: SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012)

    Article  Google Scholar 

  36. Lin, F., Markus, I.M., Nordlund, D., Weng, T.C., Asta, M.D., Xin, H.L., Doeff, M.M.: Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5, 3529–3538 (2014)

    Google Scholar 

  37. Qiu, H., Hudson, Z.M., Winnik, M.A., Manners, I.: Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015)

    Article  Google Scholar 

  38. Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(Semiconductor/Metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)

    Article  Google Scholar 

  39. Liu, L., Burnyeat, C.A., Lepsenyi, R.S., Nwabuko, I.O., Kelly, T.L.: Mechanism of shape evolution in Ag nanoprisms stabilized by thiol-terminated poly (ethylene glycol): an in situ kinetic study. Chem. Mater. 25, 4206–4214 (2013)

    Article  Google Scholar 

  40. Lohse, S.E., Burrows, N.D., Scarabelli, L., Liz-Marzán, L.M., Murphy, C.J.: Anisotropic noble metal nanocrystal growth: the role of halides. Chem. Mater. 26, 34–43 (2013)

    Article  Google Scholar 

  41. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014)

    Article  Google Scholar 

  42. Meyns, M., Iacono, F., Palencia, C., Geweke, J., Coderch, M.D., Fittschen, U.E., Gallego, J.M., Otero, R., Juárez, B.H., Klinke, C.: Shape evolution of CdSe nanoparticles controlled by halogen compounds. Chem. Mater. 26, 1813–1821 (2014)

    Article  Google Scholar 

  43. Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014)

    Google Scholar 

  44. Guo, S., Fidler, A.F., He, K., Su, D., Chen, G., Lin, Q., Pietryga, J.M., Klimov, V.I.: Shape-controlled narrow-gap SnTe nanostructures: from nanocubes to nanorods and nanowires. J. Am. Chem. Soc. 137, 15074–15077 (2015)

    Article  Google Scholar 

  45. Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M.: High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015)

    Article  Google Scholar 

  46. Xia, Y., Xia, X., Peng, H.C.: Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015)

    Article  Google Scholar 

  47. Zhang, P., Dai, X., Zhang, X., Chen, Z., Yang, Y., Sun, H., Wang, X., Wang, H., Wang, M., Su, H.: One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater. 27, 6402–6410 (2015)

    Article  Google Scholar 

  48. Zhuang, T.T., Liu, Y., Li, Y., Sun, M., Sun, Z.J., Du, P.W., Jiang, J., Yu, S.H.: 1D colloidal hetero-nanomaterials with programmed semiconductor morphology and metal location for enhancing solar energy conversion. Small 13, 1602629 (2017)

    Article  Google Scholar 

  49. Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Tao Zhuang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, TT. (2018). One-Dimensional Colloidal Hetero-Nanomaterials with Programmed Semiconductor Morphology and Metal Location for Enhancing Solar Energy Conversion. In: Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0188-9_4

Download citation

Publish with us

Policies and ethics