Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 478 Accesses

Abstract

A seed mediated colloidal solution-phase growth method was developed for preparing binary chalcogenide heteronanostructures (Cu2S-PbS and Ag2S-ZnS). Ionic semiconductors (Cu1.94S, Ag2S) were prepared as seeds for the reason that cations in these semiconductors behave virtually like a “fluid” in the high temperature reaction solution, endowing them to catalyze the nucleation and growth of other chalcogenide semiconductors on their surface. Unique Cu2S-PbS heteronanostructures have good photothermal conversion effect due to the synergistic effect. Using tiny Ag2S nanocrystals as catalysts can prepare ultrathin ZnS nanorods/nanowires. Chloride ions introduced in the reaction induced the controlled morphology transition from straight to kinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J., Bang, J.H., Tang, C., Kamat, P.V.: Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance [J]. ACS Nano 4, 387–395 (2009)

    Article  Google Scholar 

  2. Lo, S.S., Mirkovic, T., Chuang, C.H., Burda, C., Scholes, G.D.: Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Adv. Mater. 23, 180–197 (2011)

    Article  Google Scholar 

  3. Sheldon, M.T., Trudeau, P.E., Mokari, T., Wang, L.W., Alivisatos, A.P.: Enhanced semiconductor nanocrystal conductance via solution grown contacts [J]. Nano Lett. 9, 3676–3682 (2009)

    Article  Google Scholar 

  4. Buonsanti, R., Grillo, V., Carlino, E., Giannini, C., Gozzo, F., Garcia-Hernandez, M., Garcia, M.A., Cingolani, R., Cozzoli, P.D.: Architectural control of seeded-grown magnetic—semicondutor Iron Oxide-TiO2 nanorod heterostructures: the role of seeds in topology selection [J]. J. Am. Chem. Soc. 132, 2437–2464 (2010)

    Article  Google Scholar 

  5. Ouyang, L., Maher, K.N., Yu, C.L., McCarty, J., Park, H.: Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures [J]. J. Am. Chem. Soc. 129, 133–138 (2007)

    Article  Google Scholar 

  6. Zeng, J., Zhu, C., Tao, J., Jin, M., Zhang, H., Li, Z.Y., Zhu, Y., Xia, Y.: Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics [J]. Angew. Chem. Int. Ed. 51, 2354–2358 (2012)

    Article  Google Scholar 

  7. Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange [J]. Science 317, 355–358 (2007)

    Article  Google Scholar 

  8. Figuerola, A., Huis, M., Zanella, M., Genovese, A., Marras, S., Falqui, A., Zandbergen, H.W., Cingolani, R., Manna, L.: Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing [J]. Nano Lett. 10, 3028–3036 (2010)

    Article  Google Scholar 

  9. Liu, S., Guo, X., Li, M., Zhang, W.H., Liu, X., Li, C.: Solution-phase synthesis and characterization of single-crystalline SnSe nanowires [J]. Angew. Chem. Inter. Ed. 50, 12050–12053 (2011)

    Article  Google Scholar 

  10. Lin, P.A., Liang, D., Gao, X.P.A., Sankaran, R.M.: Shape-controlled Au particles for InAs nanowire growth [J]. Nano Lett. 12, 315–320 (2012)

    Article  Google Scholar 

  11. Zhu, G., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2011)

    Article  Google Scholar 

  12. Shen, S., Zhang, Y., Peng, L., Du, Y., Wang, Q.: Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/Blue and near-infrared photoluminescence [J]. Angew. Chem. Inter. Ed. 50, 7115–7118 (2011)

    Article  Google Scholar 

  13. Regulacio, M.D., Ye, C., Lim, S.H., Bosman, M., Polavarapu, L., Koh, W.L., Zhang, J., Xu, Q.H., Han, M.Y.: One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures [J]. J. Am. Chem. Soc. 133, 2052–2055 (2011)

    Article  Google Scholar 

  14. Han, S.K., Gong, M., Yao, H.B., Wang, Z.M., Yu, S.H.: One-pot controlled synthesis of Hexagonal-Prismatic Cu1. 94S-ZnS, Cu1. 94S-ZnS-Cu1. 94S, and Cu1. 94S-ZnS-Cu1. 94S-ZnS-Cu1. 94S heteronanostructures [J]. Angew. Chem. Inter. Ed. 51, 6335–6339 (2012)

    Google Scholar 

  15. Han, W., Yi, L., Zhao, N., Tang, A., Gao, M., Tang, Z.: Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals [J]. J. Am. Chem. Soc. 130, 13152–13161 (2008)

    Article  Google Scholar 

  16. Fu, H., Tsang, S.W.: Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications [J]. Nanoscale 4, 2187–2201 (2012)

    Article  Google Scholar 

  17. Chakrabarti, D., Laughlin, D.: The Cu-S (copper-sulfur) system [J]. J. Phase Equilibria 4, 254–271 (1983)

    Google Scholar 

  18. Zhuang, Z., Peng, Q., Zhang, B., Li, Y.: Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice [J]. J. Am. Chem. Soc. 130, 10482–10483 (2008)

    Article  Google Scholar 

  19. Acharya, S., Sarma, D., Golan, Y., Sengupta, S., Ariga, K.: Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures [J]. J. Am. Chem. Soc. 131, 11282–11283 (2009)

    Article  Google Scholar 

  20. Qian, X., Liu, H., Chen, N., Zhou, H., Sun, L., Li, Y.: Architecture of CuS/PbS heterojunction semiconductor nanowire arrays for electrical switches and diodes [J]. Inorg. Chem. 51, 6771–6775 (2012)

    Article  Google Scholar 

  21. Zhuang, T.T., Fan, F.J., Gong, M., Yu, S.H.: Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S-PbS heteronanostructures [J]. Chem. Commun. 48, 9762–9764 (2012)

    Article  Google Scholar 

  22. Zhang, J., Tang, Y., Lee, K., Ouyang, M.: Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches [J]. Science 327, 1634–1638 (2010)

    Article  Google Scholar 

  23. Moon, G.D., Ko, S., Min, Y., Zeng, J., Xia, Y., Jeong, U.: Chemical transformations of nanostructured materials [J]. Nano Today 6, 186–203 (2011)

    Article  Google Scholar 

  24. Luther, J.M., Zheng, H., Sadtler, B., Alivisatos, A.P.: Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions [J]. J. Am. Chem. Soc. 131, 16851–16857 (2009)

    Article  Google Scholar 

  25. Lukashev, P., Lambrecht, W.R.L., Kotani, T., van Schilfgaarde, M.: Electronic and crystal structure of Cu{2 − x}S: full-potential electronic structure calculations [J]. Phys. Rev. B 76, 195202 (2007)

    Article  Google Scholar 

  26. Bae, W.K., Kwak, J., Park, J.W., Char, K., Lee, C., Lee, S.: Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient [J]. Adv. Mater. 21, 1690–1694 (2009)

    Article  Google Scholar 

  27. Barrelet, C.J., Wu, Y., Bell, D.C., Lieber, C.M.: Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J. Am. Chem. Soc. 125, 11498–11499 (2003)

    Article  Google Scholar 

  28. Chen, J.Y., Lim, B., Lee, E.P., Xia, Y.N.: Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J]. Nano Today 4, 81–95 (2009)

    Article  Google Scholar 

  29. Cho, S.H., Sung, J., Hwang, I., Kim, R.H., Choi, Y.S., Jo, S.S., Lee, T.W., Park, C.: High performance AC electroluminescence from colloidal quantum dot hybrids [J]. Adv. Mater. 24, 4540–4546 (2012)

    Article  Google Scholar 

  30. Fan, F.J., Wu, L., Gong, M., Chen, S.Y., Liu, G.Y., Yao, H.B., Liang, H.W., Wang, Y.X., Yu, S.H.: Linearly arranged polytypic CZTSSe nanocrystals [J]. Sci. Rep. 2, 952 (2012)

    Article  Google Scholar 

  31. Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., Golberg, D.: ZnS nanostructures: from synthesis to applications [J]. Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  32. Fang, X.S., Bando, Y., Liao, M.Y., Gautam, U.K., Zhi, C.Y., Dierre, B., Liu, B.D., Zhai, T.Y., Sekiguchi, T., Koide, Y., Golberg, D.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors [J]. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  33. Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater [J] 15, 63–68 (2005)

    Article  Google Scholar 

  34. Nag, A., Kundu, J., Hazarika, A.: Seeded-growth, nanocrystal-fusion, ion-exchange and inorganic-ligand mediated formation of semiconductor-based colloidal heterostructured nanocrystals [J]. CrystEngComm 16, 9391–9407 (2014)

    Article  Google Scholar 

  35. Han, S.K., Gong, M., Yao, H.B., Wang, Z.M., Yu, S.H.: One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures [J]. Angew. Chem. Int. Ed. 51, 6365–6368 (2012)

    Article  Google Scholar 

  36. Fan, F.J., Wu, L., Gong, M., Chen, S.Y., Liu, G.Y., Yao, H.B., Liang, H.W., Wang, Y.X., Yu, S.H.: Linearly arranged polytypic CZTSSe nanocrystals [J]. Sci. Rep. 2, 952 (2012)

    Article  Google Scholar 

  37. Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A.: Zinc-blende–wurtzite polytypism in semiconductors [J]. Phys. Rev. B 46, 10086–10097 (1992)

    Article  Google Scholar 

  38. Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., Alivisatos, A.P.: Controlled growth of tetrapod-branched inorganic nanocrystals [J]. Nat. Mater. 2, 382–385 (2003)

    Article  Google Scholar 

  39. Zitoun, D., Pinna, N., Frolet, N., Belin, C.: Single crystal manganese oxide multipods by oriented attachment [J]. J. Am. Chem. Soc. 127, 15034–15035 (2005)

    Article  Google Scholar 

  40. van der Meulen, M.I., Petkov, N., Morris, M.A., Kazakova, O., Han, X., Wang, K.L., Jacob, A.P., Holmes, J.D.: Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics [J]. Nano Lett. 9, 50–56 (2009)

    Article  Google Scholar 

  41. Wang, W., Summers, C.J., Wang, Z.L.: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Lett. 4, 423–426 (2004)

    Article  Google Scholar 

  42. Hamedi, M., Herland, A., Karlsson, R.H., Inganäs, O.: Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT [J]. Nano Lett. 8, 1736–1740 (2008)

    Article  Google Scholar 

  43. Hyun, Y.-J., Lugstein, A., Steinmair, M., Bertagnolli, E., Pongratz, P.: Orientation specific synthesis of kinked silicon nanowires grown by the vapour-liquid-solid mechanism [J]. Nanotechnology 20, 125606 (2009)

    Article  Google Scholar 

  44. Li, S., Zhang, X., Zhang, L., Gao, M.: Twinning-induced kinking of Sb-doped ZnO nanowires [J]. Nanotechnology 21, 435602 (2010)

    Article  Google Scholar 

  45. Shen, G., Liang, B., Wang, X., Chen, P.-C., Zhou, C.: Indium Oxide nanospirals made of kinked nanowires [J]. ACS Nano 5, 2155–2161 (2011)

    Article  Google Scholar 

  46. Tian, B., Xie, P., Kempa, T.J., Bell, D.C., Lieber, C.M.: Single-crystalline kinked semiconductor nanowire superstructures [J]. Nat Nano 4, 824–829 (2009)

    Article  Google Scholar 

  47. Xu, L., Jiang, Z., Qing, Q., Mai, L., Zhang, Q., Lieber, C.M.: Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes [J]. Nano Lett. 13, 746–751 (2013)

    Article  Google Scholar 

  48. Jiang, Z., Qing, Q., Xie, P., Gao, R., Lieber, C.M.: Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording [J]. Nano Lett. 12, 1711–1716 (2012)

    Article  Google Scholar 

  49. Jiang, J.W., Yang, N., Wang, B.S., Rabczuk, T.: Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects [J]. Nano Lett. 13, 1670–1674 (2013)

    Article  Google Scholar 

  50. Musin, I.R., Filler, M.A.: Chemical control of semiconductor nanowire kinking and superstructure [J]. Nano Lett. 12, 3363–3368 (2012)

    Article  Google Scholar 

  51. Lilach, Y., Zhang, J.-P., Moskovits, M., Kolmakov, A.: Encoding morphology in oxide nanostructures during their growth [J]. Nano Lett. 5, 2019–2022 (2005)

    Article  Google Scholar 

  52. Yan, C., Singh, N., Lee, P.S.: Kinking-induced structural evolution of Metal Oxide nanowires into single-crystalline nanorings [J]. ACS Nano 4, 5350–5356 (2010)

    Article  Google Scholar 

  53. Zhang, H., Jin, M.S., Wang, J.G., Li, W.Y., Camargo, P.H.C., Kim, M.J., Yang, D.R., Xie, Z.X., Xia, Y.N.: Synthesis of Pd—Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction [J]. J. Am. Chem. Soc. 133, 6078–6089 (2011)

    Article  Google Scholar 

  54. Xie, S.F., Lu, N., Xie, Z.X., Wang, J.G., Kim, M.J., Xia, Y.N.: Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh Cubic nanoframes by selective etching of the Pd cores [J]. Angew. Chem. Int. Ed. 51, 10266–10270 (2012)

    Article  Google Scholar 

  55. Yin, J., Wang, J.H., Li, M.R., Jin, C.Z., Zhang, T.: Iodine Ions mediated formation of monomorphic single-crystalline platinum nanoflowers [J]. Chem. Mater. 24, 2645–2654 (2012)

    Article  Google Scholar 

  56. Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A.: Defining rules for the shape evolution of gold nanoparticles [J]. J. Am. Chem. Soc. 134, 14542–14554 (2012)

    Article  Google Scholar 

  57. Lim, J., Bae, W.K., Park, K.U., zur Borg, L., Zentel, R., Lee, S., Char, K.: Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation [J]. Chem. Mater. 25, 1443–1449 (2013)

    Article  Google Scholar 

  58. Kim, M.R., Miszta, K., Povia, M., Brescia, R., Christodoulou, S., Prato, M., Marras, S., Manna, L.: Influence of Chloride Ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth [J]. ACS Nano 6, 11088–11096 (2012)

    Article  Google Scholar 

  59. Lim, S.J., Kim, W., Jung, S., Seo, J., Shin, S.K.: Anisotropic etching of semiconductor nanocrystals [J]. Chem. Mater. 23, 5029–5036 (2011)

    Article  Google Scholar 

  60. Lim, S.J., Kim, W., Shin, S.K.: Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets [J]. J. Am. Chem. Soc. 134, 7576–7579 (2012)

    Article  Google Scholar 

  61. Saruyama, M., Kanehara, M., Teranishi, T.: Drastic structural transformation of cadmium chalcogenide nanoparticles using chloride ions and surfactants [J]. J. Am. Chem. Soc. 132, 3280–3282 (2010)

    Article  Google Scholar 

  62. Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., Golberg, D.: ZnS nanostructures: from synthesis to applications [J]. Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  63. Zhai, T., Li, L., Ma, Y., Liao, M., Wang, X., Fang, X., Yao, J., Bando, Y., Golberg, D.: One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection [J]. Chem. Soc. Rev. 40, 2986–3004 (2011)

    Article  Google Scholar 

  64. Li, H., Wang, X., Xu, J., Zhang, Q., Bando, Y., Golberg, D., Ma, Y., Zhai, T.: One-dimensional CdS nanostructures: a promising candidate for optoelectronics [J]. Adv. Mater. 25, 3017–3037 (2013)

    Article  Google Scholar 

  65. Tran, T.K., Park, W., Tong, W., Kyi, M.M., Wagner, B.K., Summers, C.J.: Photoluminescence properties of ZnS epilayers [J]. J. Appl. Phys. 81, 2803–2809 (1997)

    Article  Google Scholar 

  66. Ong, H.C., Chang, R.P.H.: Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry [J]. Appl. Phys. Lett. 79, 3612–3614 (2001)

    Article  Google Scholar 

  67. Bae, W.K., Kwak, J., Park, J.W., Char, K., Lee, C., Lee, S.: Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient [J]. Adv. Mater. 21, 1690–1694 (2009)

    Article  Google Scholar 

  68. Cho, S.H., Sung, J., Hwang, I., Kim, R.H., Choi, Y.S., Jo, S.S., Lee, T.W., Park, C.: High performance AC electroluminescence from colloidal quantum dot hybrids [J]. Adv. Mater. 24, 4540–4546 (2012)

    Article  Google Scholar 

  69. Koutsogeorgis, D.C., Mastio, E.A., Cranton, W.M., Thomas, C.B.: Pulsed KrF laser annealing of ZnS: Mn laterally emitting thin film electroluminescent displays [J]. Thin Solid Films 383, 31–33 (2001)

    Article  Google Scholar 

  70. Yan, H., He, R., Johnson, J., Law, M., Saykally, R.J., Yang, P.: Dendritic nanowire ultraviolet laser array [J]. J. Am. Chem. Soc. 125, 4728–4729 (2003)

    Article  Google Scholar 

  71. Fang, X.S., Bando, Y., Liao, M.Y., Gautam, U.K., Zhi, C.Y., Dierre, B., Liu, B.D., Zhai, T.Y., Sekiguchi, T., Koide, Y., Golberg, D.: Single-crystalline ZnS nanobelts as ultraviolet-light sensors [J]. Adv. Mater. 21, 2034–2039 (2009)

    Article  Google Scholar 

  72. Zhu, G.X., Zhang, S.G., Xu, Z., Ma, J., Shen, X.P.: Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties [J]. J. Am. Chem. Soc. 133, 15605–15612 (2011)

    Article  Google Scholar 

  73. Zhang, Y.J., Xu, H.R., Wang, Q.B.: Ultrathin single crystal ZnS nanowires [J]. Chem. Commun. 46, 8941–8943 (2010)

    Article  Google Scholar 

  74. Barrelet, C.J., Wu, Y., Bell, D.C., Lieber, C.M.: Synthesis of CdS and ZnS nanowires using single-source molecular precursors [J]. J. Am. Chem. Soc. 125, 11498–11499 (2003)

    Article  Google Scholar 

  75. Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C.: Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders [J]. Adv. Funct. Mater. 15, 63–68 (2005)

    Article  Google Scholar 

  76. Zhu, G.X., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2010)

    Article  Google Scholar 

  77. Shen, S.L., Zhang, Y.J., Peng, L., Du, Y.P., Wang, Q.B.: Matchstick-shaped Ag2S–ZnS heteronanostructures preserving both UV/Blue and near-infrared photoluminescence [J]. Angew. Chem. Int. Ed. 50, 7115–7118 (2011)

    Article  Google Scholar 

  78. Zhuang, T.T., Yu, P., Fan, F.J., Wu, L., Liu, X.J., Yu, S.H.: Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by Chloride Ions: a case study [J]. Small 10, 1394–1402 (2014)

    Article  Google Scholar 

  79. Sowers, K.L., Swartz, B., Krauss, T.D.: Chemical mechanisms of semiconductor nanocrystal synthesis [J]. Chem. Mater. 25, 1351–1362 (2013)

    Article  Google Scholar 

  80. Zhu, G., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host [J]. J. Am. Chem. Soc. 133, 148–157 (2011)

    Article  Google Scholar 

  81. Huang, F., Banfield, J.F.: Size-dependent phase transformation kinetics in nanocrystalline ZnS [J]. J. Am. Chem. Soc. 127, 4523–4529 (2005)

    Article  Google Scholar 

  82. Wageh, S., Ling, Z.S., Xu-Rong, X.: Growth and optical properties of colloidal ZnS nanoparticles [J]. J. Cryst. Growth 255, 332–337 (2003)

    Article  Google Scholar 

  83. Yu, J.H., Joo, J., Park, H.M., Baik, S.-I., Kim, Y.W., Kim, S.C., Hyeon, T.: Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism [J]. J. Am. Chem. Soc. 127, 5662–5670 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao-Tao Zhuang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, TT. (2018). Seeded Mediated Growth for Binary Chalcogenide Heteronanostructures. In: Design, Synthesis and Applications of One-Dimensional Chalcogenide Hetero-Nanostructures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-0188-9_2

Download citation

Publish with us

Policies and ethics