Skip to main content

Effect of Zr Content on Microstructure and Mechanical Properties of Al–Mg–Si–Cu Alloy

  • Conference paper
  • First Online:
  • 3229 Accesses

Abstract

Effect of Zr content on microstructure and mechanical properties of Al–Mg–Si–Cu alloy were investigated by means of metallograph microscope, tensile test and transmission electron microscopy (TEM). The results show that the main precipitate is AlCuMgSi phase in Al–Mg–Si–Cu alloy after cold rolling. Zr element plays a dominant role in refinement of grains. With the increase of Zr content, numerous dislocations are found in Al–Mg–Si–Cu alloy, together with a large amount of complex phase containing Zr element precipitate within the grains. When the content of Zr is 0.7%, the tensile strength and elongation of Al–Mg–Si–Cu alloy are 490 MPa and 10%, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Li, X. L. Wang, Z. X. Shi, et al, Precipitation behaviors of Al-Mg-Si-(Cu) aluminum alloys during continuous heating, Chin. J. of Nonferrous Met. 21 (2011) 2028–2034.

    Google Scholar 

  2. H. C. Yuan, C. Wang, J. S. Zhang, Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy, Inter. J. of Miner. Metal. and Mater. 20 (2013) 659–664.

    Google Scholar 

  3. G. Wang, J. Zhou, Z. W. Liu, et al, Lightweight design and crash performance analysis of automotive aluminum bumper, Chin. J. of Nonferrous Met. 22 (2012) 90–98.

    Google Scholar 

  4. S. Esmaeili, X. Wang, D. J. Lloyd, et al, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metal. Mater. Trans. A 34 (2003) 751–763.

    Google Scholar 

  5. W. Yang, M. Wang, Y. Jia, et al, Studies of orientations of β″ precipitates in Al-Mg-Si-(Cu) alloys by electron diffraction and transition matrix analysis, Metal. Mater. Trans. A 42 (2011) 2917–2929.

    Google Scholar 

  6. J. C. Williams, E. A. Starke, Progress in structural materials for aerospace systems, Acta Mater. 51 (2003) 5775–5799.

    Google Scholar 

  7. Y. Meng, Z. Zhao, J. Cui, Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys, T Nonferr. Metal. Soc. 23 (2013) 1882–1889.

    Google Scholar 

  8. G. Svenningsen, M. H. Larsen, J. C. Walmsley, et al, Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corros. Sci. 48 (2006) 1528–1543.

    Google Scholar 

  9. Y. Meng, J. Cui, Z. Zhao, et al, Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6×××series, J. Alloys and Compd. 573 (2013) 102–111.

    Google Scholar 

  10. A. Bahrami, A. Razaghian, M. Emamy, et al, The effect of Zr on the microstructure and tensile properties of hot-extruded Al-Mg2Si composite, Mater. Design 36 (2012) 323–330.

    Google Scholar 

  11. V. Ocenasek, M. Slamova, Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys, Mater. Charact. 47 (2001) 157–162.

    Google Scholar 

  12. L .Z. He, X. B. Zhang, J. Z. Cui, Investigation of heat treatment of a 6013 aluminium type alloy, Aerosp. Mater. Technol. 29 (1999) 42–45+60.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NO. 51561004) and Guangxi Science Foundation (NO. 2016GXNSFDA380008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y.P., Zhou, X.H., Xu, W.B., He, J.M., Wang, W.X. (2018). Effect of Zr Content on Microstructure and Mechanical Properties of Al–Mg–Si–Cu Alloy. In: Han, Y. (eds) High Performance Structural Materials. CMC 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-0104-9_42

Download citation

Publish with us

Policies and ethics