Skip to main content

Potential of Biopriming in Enhancing Crop Productivity and Stress Tolerance

  • Chapter
  • First Online:

Abstract

Appropriate application of beneficial microbes to the seed or soil is essential for their efficacy and efficiency. Several methods like soil application, seed inoculation, root dipping, foliar application, and seed coating or covering have been employed, yet with the increase in concerns regarding survival of microbes on seed surface, and increasing focus on endophytes has led to search for potential methods ensuring the survival and colonization of the seed by the required microorganisms. To overcome the problems of lack of uniformity in seed emergence, poor seedling vigor, and establishment, researchers have come up with the technique of seed priming, which employing activation of physiological processes prior to sowing has certain advantages. Incorporation of hydration or immersion of seeds in microbial suspension, and/or seed covering in case of fungi, followed by incubation for a predetermined duration, and subsequent drying termed as biopriming have shown better survival, and colonization of desired microbes on/in the seeds providing plant growth promoting, and stress tolerance activities when used in many crops. A diversity of biopriming methods have been used with varying potential of plant growth-promoting activities as well as promising results in biocontrol of pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CFUs:

Colony forming units

References

  • Abraha B, Yohannes G (2013) The role of seed priming in improving seedling growth of maize (Zeamays L.) under salt stress at field conditions. Agric Sci 4:666–672

    Google Scholar 

  • Abuamsha R, Salman M, Ehlers RU (2010) Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis. Biocontrol Sci Tech 21:199–213. https://doi.org/10.1080/09583157.2010.537311

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ – Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Ahmad I, Basra SMA, Hussain S, Hussain SA, Rehman A, Ali A (2015) Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. J Environ Agric Sci 3:14–22

    Google Scholar 

  • Ahmed M, Qadeer U, Ahmed ZI, Hassan F-u (2016) Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci 62:299–315. https://doi.org/10.1080/03650340.2015.1048235

    Article  CAS  Google Scholar 

  • Aiyaz M, Divakara ST, Chandranayaka S, Niranjana SR (2015) Efficacy of seed hydropriming with phytoextracts on plant growth promotion and antifungal activity in maize. Int J Pest Manag 61:153–160. https://doi.org/10.1080/09670874.2015.1025116

    Article  Google Scholar 

  • Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ananthi M, Selvaraju P, Sundaralingam K (2014) Effect of bio-priming using bio-control agents on seed germination and seedling vigour in chilli (Capsicum annuum L.) ‘PKM 1’. J Hortic Sci Biotechnol 89:564–568. https://doi.org/10.1080/14620316.2014.11513121

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment—a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–271. https://doi.org/10.1016/S0065-2113(05)88006-X

    Article  Google Scholar 

  • Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant JM (2012) Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant Cell Environ 35:2061–2074. https://doi.org/10.1111/j.1365-3040.2012.02536.x

    Article  PubMed  CAS  Google Scholar 

  • Begum MM, Sariah M, Puteh AB, Zainal Abidin MA, Rahman MA, Siddiqui Y (2010) Field performance of bio-primed seeds to suppress Colletotrichum truncatum causing damping-off and seedling stand of soybean. Biol Control 53:18–23. https://doi.org/10.1016/j.biocontrol.2009.12.001

    Article  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MA (1998) The use of biologicals to enhance vegetable seed quality. Seed Technology 20:198–208

    Google Scholar 

  • Bennett M, Fritz VA, Callan NW (1992) Impact of seed treatments on crop stand establishment. Hort Technol 2:345–349

    Google Scholar 

  • Bennett AJ, Mead A, Whipps JM (2009) Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol Control 51:417–426

    Article  Google Scholar 

  • Bhargava B, Gupta YC, Dhiman SR, Sharma P (2015) Effect of seed priming on germination, growth and flowering of snapdragon (Antirrhinum majus L.). Natl Acad Sci Lett 38:81–85. https://doi.org/10.1007/s40009-014-0298-4

    Article  CAS  Google Scholar 

  • Bhatt RM, Selvakumar G, Upreti KK, Boregowda PC (2015) Effect of biopriming with enterobacter strains on seed germination and seedling growth of tomato (Solanum lycopersicum L.) under osmotic stress. Proc Natl Acad Sci, India Section B: Biol Sci 85:63–69. https://doi.org/10.1007/s40011-014-0333-8

    Article  Google Scholar 

  • Brocklehurst PA, Dearman J (2008) Interaction between seed priming treatments and nine seed lots of carrot, celery and onion II. Seedling emergence and plant growth. Ann Appl Biol 102:583–593

    Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for control of Pythium ultimum pre emergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hortscience 26:1163–1165

    Google Scholar 

  • Callan NW, Mathre DE, Miller IB, Vavrina CS (1997) Biological seed treat-ments, factors affecting their efficacy. Hortic Sci 32:197–183

    Google Scholar 

  • Carrozzi LE, Creus CM, Barassi CA et al (2012) Reparation of aged lettuce (Lactuca sativa) seeds by osmotic priming and Azospirillum brasilense inoculation. Botany 90:1093–1102

    Article  CAS  Google Scholar 

  • Chakraborty AP, Dey P, Chakraborty B et al (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:61–70

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellouzi H, Sghayar S, Abdelly C (2017) H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J Plant Physiol 210:38–50. https://doi.org/10.1016/j.jplph.2016.11.014

    Article  PubMed  CAS  Google Scholar 

  • El-Mougy NS, Abdel-Kader MM (2008) Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australas Plant Pathol 37:464–471. https://doi.org/10.1071/ap08043

    Article  Google Scholar 

  • El-Mougy N, Abdel-Kader M (2008) Long-term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australas Plant Pathol 37:464–471

    Article  Google Scholar 

  • Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50:38–44. https://doi.org/10.1007/s12275-012-1439-4

    Article  PubMed  Google Scholar 

  • Farhad W, Cheema MA, Saleem MF, Saqib M (2011) Evaluation of drought tolerance in maize hybrids. Int J Agric Biol Eng 13(4):523–528

    Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006) Seed invigoration by osmohardening in coarse and fine rice. Seed Sci Technol 34:181–187. https://doi.org/10.15258/sst.2006.34.1.19

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199:12–22

    Article  CAS  Google Scholar 

  • Farooq M et al (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2017.06.020

  • Firuzsalari SM, Mirshekari B, Khochebagh SB (2012) Effect of seed inoculation with bio-fertilizer on germination and early growth of corn. Int Res J App Basic Sci 3:1097–1102

    Google Scholar 

  • Galhaut L, de Lespinay A, Walker DJ, Bernal MP, Correal E, Lutts S (2014) Seed priming of Trifolium repens L. improved germination and early seedling growth on heavy metal-contaminated soil. Water Air Soil Pollut 225:1905

    Article  CAS  Google Scholar 

  • Ghezal N et al (2016) Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia leaves aqueous extract. S Afr J Bot 105:240–250. https://doi.org/10.1016/j.sajb.2016.04.006

    Article  CAS  Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Proc World Acad Sci Eng Technol 49:19–24

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Australas Sci 2012:15. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC, Tejada Moral M (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Grassbaugh EM, Bennett MA (1998) Factors affecting vegetable stand establishment. Sci Agric 55:116–120

    Article  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V et al (2012) Plant growthpromoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hamdia MAE-S, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174. https://doi.org/10.1023/B:GROW.0000049414.03099.9b

    Article  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39:187–200. https://doi.org/10.1016/j.apsoil.2007.12.006

    Article  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520–525

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hossain MA et al (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420. https://doi.org/10.3389/fpls.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MM, Sultana F, Hyakumachi M (2017) Role of ethylene signalling in growth and systemic resistance induction by the plant growth-promoting fungus Penicillium viridicatum in Arabidopsis. J Phytopathol: 1–10. https://doi.org/10.1111/jph.12577

  • Hussain S, Khan F, Hussain HA, Nie L (2016) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen B, Povlsen FV, Knudsen I, Jensen SDF (2001) Combining microbial seed treatment with priming of carrot seeds for control of seed borne Alternaria spp. In: Biocontrol agents: mode of action and interaction with other means of control: proceedings of the phytopathogens WG meeting, 2001, pp 197–201

    Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.). Wilczek Protoplasma 253:277–289. https://doi.org/10.1007/s00709-015-0804-7

    Article  PubMed  CAS  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130. https://doi.org/10.1007/s00344-012-9283-7

    Article  CAS  Google Scholar 

  • Kaya MD, Okcu G, Atak M, Cıkıhı Y, Kolsarıcı O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

    Article  CAS  Google Scholar 

  • Khan AA (1992) Preplant physiological seed conditioning. Hort Reviews 14:131–181

    Google Scholar 

  • Kubik KK (1995) Seed priming and survival of desiccated Enterobacter cloacae inoculated during seed priming. PhD thesis, University of Nebraska, Lincoln

    Google Scholar 

  • Kumar VV (2016) Plant growth-promoting microorganisms: interaction with plants and soil. In: Hakeem KR, Akhtar MS, Abdullah SNA (eds) Plant, soil and microbes: volume 1: implications in crop science. Springer, Cham, pp 1–16. https://doi.org/10.1007/978-3-319-27455-3_1

    Chapter  Google Scholar 

  • Lee SS, Kim JH (2000) Total sugars, a-amylase activity, and emergence after priming of normal and aged rice seeds. Korean J Crop Sci 45:108–111

    Google Scholar 

  • Lewis JA, Papavizas GC, Connick WJ Jr (1987) Preparation of pellets containing fungi and nutrient for control of soilborne plant pathogens. Google Patents

    Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182

    Article  CAS  PubMed  Google Scholar 

  • López-Coria M, Hernández-Mendoza J, Sánchez-Nieto S (2016) Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Mol Plant-Microbe Interact 29:797–806

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:1–13. https://doi.org/10.1093/femsec/fiw112

    Article  CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Mallik MAB, Williams RD (2008) Plant growth promoting rhizobacteria and mycorrhizal fungi in sustainable agriculture and forestry. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 321–345. https://doi.org/10.1007/978-0-387-77337-7_17

    Chapter  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75. https://doi.org/10.1016/j.bcab.2016.02.010

    Article  Google Scholar 

  • Miche L, Balandreau J (2001) Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol 67:3046–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirshekari B, Hokmalipour S, Sharifi RS, Farahvash F, Gadim A (2012) Effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on yield and dry matter accumulation of spring barley (Hordeum vulgare L.) at various levels of nitrogen and phosphorus fertilizers. J Food Agric Environ 10:314–320

    CAS  Google Scholar 

  • Mnasri N, Chennaoui C, Gargouri S, Mhamdi R, Hessini K, Elkahoui S, Djébali N (2017) Efficacy of some rhizospheric and endophytic bacteria in vitro and as seed coating for the control of Fusarium culmorum infecting durum wheat in Tunisia. Eur J Plant Pathol 147:501–515. https://doi.org/10.1007/s10658-016-1018-3

    Article  CAS  Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M et al (2010) Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4:564

    Google Scholar 

  • Moulick D, Ghosh D, Chandra Santra S (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578. https://doi.org/10.1016/j.plaphy.2016.11.004

    Article  PubMed  CAS  Google Scholar 

  • Nakkeeran S, Fernando WD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46:493–510. https://doi.org/10.1023/a:1014131131808

    Article  Google Scholar 

  • Nayaka S, Niranjana S, Uday Shankar A, Niranjan Raj S, Reddy M, Prakash H, Mortensen C (2010) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Protect 43:264–282

    Article  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  • Orzolek MD (1991) Establishment of vegetables in the field. HortTechnology 1:78–81

    Google Scholar 

  • Panigrahi S, Aruna Lakshmi K, Mir N, Taiyebi M (2016) Biopriming of micropropagated plantlets using various bacterial strains in different combinations-induces the systemic resistance. In: Avadhanam S, Jyothsna G, Kashyap A (eds) Next generation DNA led technologies. Springer, Singapore, pp 113–122. https://doi.org/10.1007/978-981-287-670-6_13

    Chapter  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Presowing seed priming. Hortic Rev 16:109–141

    Google Scholar 

  • Parera CA, Qiao P, Cantliffe DJ (1993) Enhanced celery germination at stress temperature via solid matrix priming. Hortscience 28:20–22

    Google Scholar 

  • Pehlivan N, Yesilyurt AM, Durmus N, Karaoglu SA (2017) Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol Plant 39:79. https://doi.org/10.1007/s11738-017-2375-z

    Article  CAS  Google Scholar 

  • Piccoli P, Bottini R (2013) Abiotic stress tolerance induced by endophytic PGPR. In: Aroca R (ed) Symbiotic endophytes. Springer, Berlin/Heidelberg, pp 151–163. https://doi.org/10.1007/978-3-642-39317-4_8

    Chapter  Google Scholar 

  • Pill WG (1995) Low water potential and presowing germination treatments to improve seed quality. In: Basra AS (ed) Seed quality, basic mechanisms and agricultural implications. Haworth Press, New York

    Google Scholar 

  • Posmyk MM, Bałabusta M, Janas KM (2009) Melatonin applied by osmopriming, as phytobiostimulator improving cucumber (Cucumissativus L.) seedlings growth at abiotic stresses conditions. In: Li S, Wang Y, Cao F, Huang P, Zhang Y (eds) Progress in environmental science and technology vol II A. Science Press, Beijing, pp 362–369

    Google Scholar 

  • Prasad SR, Kamble UR, Sripathy KV, Udaya Bhaskar K, Singh DP (2016) Seed bio-priming for biotic and abiotic stress management. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi, pp 211–228. https://doi.org/10.1007/978-81-322-2647-5_12

    Chapter  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil:347–387. https://doi.org/10.1007/s11104-011-0858-z

  • Reddy PP (2013) Recent advances in crop protection. Springer, New Delhi, p 83

    Book  Google Scholar 

  • Rouhollah A (2013) Drought stress tolerance of barley (Hordeum vulgare L.) affected bypriming with PEG. Int J Farming and Allied Sci 2(20):803–808

    Google Scholar 

  • Rowse H (1996) Drum priming: a non-osmotic method of priming seeds. Seed Sci Technol 24:281–294

    Google Scholar 

  • Rybakova D, Schmuck M, Wetzlinger U, Varo-Suarez A, Murgu O, Müller H, Berg G (2016) Kill or cure? The interaction between endophytic Paenibacillus and Serratia strains and the host plant is shaped by plant growth conditions. Plant Soil 405:65–79. https://doi.org/10.1007/s11104-015-2572-8

    Article  CAS  Google Scholar 

  • Saber Z, Pirdashti H, Esmaeili M et al (2012) Response of wheat growth parameters to co-inoculation of plant growth promoting rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Appl Sci J 16:213–219

    CAS  Google Scholar 

  • Saglam S, Day S, Kaya G, Gürbüz A (2010) Hydropriming increases germination oflentil (Lens culinaris Medik.) under water stress. Notulae Scientia Biologicae 2:103–106

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J Microbiol Biotechnol 31:833–839. https://doi.org/10.1007/s11274-015-1837-y

    Article  PubMed  CAS  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232. https://doi.org/10.1038/nature11069

    Article  PubMed  CAS  Google Scholar 

  • Shah G et al (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65. https://doi.org/10.1016/j.gexplo.2016.03.011

    Article  CAS  Google Scholar 

  • Shariatmadari Z, Riahi H, Seyed Hashtroudi M, Ghassempour A, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547. https://doi.org/10.1080/00380768.2013.782253

    Article  CAS  Google Scholar 

  • Sharifi RS (2011) Study of grain yield and some of physiological growth indices in maize (Zea mays L.) hybrids under seed biopriming with plant growth promoting rhizobacteria (PGPR). J Food Agric Environ 189:3–4

    Google Scholar 

  • Sharifi RS (2012) Study of nitrogen rates effects and seed biopriming with PGPR on quantitative and qualitative yield of Safflower (Carthamus tinctorius L.). Tech J Eng Appl Sci 2:162–166

    Google Scholar 

  • Sharifi RS, Khavazi K (2011) Effects of seed priming with plant growth promotion rhizobacteria (PGRP) on yield and yield attribute of maize (Zeamays L.) hybrids. J Food Agric Environ 9:496–500

    Google Scholar 

  • Sharifi RS, Khavazi K, Gholipouri A (2011) Effect of seed priming with plant growth promoting Rhizobacteria (PGPR) on dry matter accumulation and yield of maize (Zea mays L.) hybrids. Int Res J Biochem Bioinf1:76–83

    Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):139–148

    CAS  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166:171–182. https://doi.org/10.1111/aab.12160

    Article  CAS  Google Scholar 

  • Singh US, Zaidi NW, Joshi D, Varshney S, Khan T (2003) Current status of Trichoderma as biocontrol agent. In: Ramanujam B, Rabindra RJ (eds) Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control, Bangalore, pp 13–48

    Google Scholar 

  • Singh V, Upadhyay R, Sarma B, Singh H (2016a) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9:361

    Article  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016b) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 193:74–86. https://doi.org/10.1016/j.micres.2016.09.002

    Article  PubMed  Google Scholar 

  • Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31. https://doi.org/10.1016/j.biocontrol.2009.11.012

    Article  Google Scholar 

  • Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Jun MA (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36(11):1931–1940

    Article  CAS  Google Scholar 

  • Tabatabaei SA (2013) Effect of osmo-priming on germination and enzyme activity in barley (Hordeum vulgare L.) seeds under drought stress conditions. J Stress Physiol Biochem 9(4):25–31

    Google Scholar 

  • Taylor AG, Harman GE (1990) Concept and technologies of selected seed treatments. Annu Rev Phytopathol 28:321–339

    Article  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494. https://doi.org/10.1007/s00284-014-0612-x

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Warren JE, Bennett MA (1997) Seed hydration using the drum priming system. Hortscience 32:1220–1221

    Google Scholar 

  • Warren JE, Bennett MA (1999) Bio-osmopriming tomato (Lycopersicon esculentum Mill.) seeds for improved stand establishment. Seed Sci Technol 27:489–499

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. https://doi.org/10.1094/PHYTO-97-2-0250

    Article  PubMed  Google Scholar 

  • Wright B, Rowse H, Whipps J (2003a) Application of beneficial microorganisms to seeds during drum priming. Biocontrol Sci Tech 13:599–614

    Article  Google Scholar 

  • Wright B, Rowse H, Whipps JM (2003b) Microbial population dynamics on seeds during drum and steeping priming. Plant Soil 255:631–640. https://doi.org/10.1023/a:1026055112679

    Article  CAS  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290. https://doi.org/10.1007/s10725-010-9528-z

    Article  CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4:125–136

    Article  Google Scholar 

  • Yan M (2015) Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S Afr J Bot 99:88–92. https://doi.org/10.1016/j.sajb.2015.03.195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, A., Kataoka, R. (2018). Potential of Biopriming in Enhancing Crop Productivity and Stress Tolerance. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_9

Download citation

Publish with us

Policies and ethics