Skip to main content

Seed Priming: New Vistas and Contemporary Perspectives

  • Chapter
  • First Online:
Advances in Seed Priming

Abstract

Seed germination and uniform plant stand in field are of most critical stages of crop growth that determine the final yield. Crop production is very often hampered under suboptimal conditions, and such effect is principally attributed to poor or uneven germination and unsynchronized seedling emergence. Seed priming is an age-old and simple but effective technique to enhance germination percentage and speed and to achieve uniform plant stand and better yield in a wide range of environmental conditions. However, various priming protocols differ in their effectiveness depending on a complex interaction of factors including plant species or genotypes, water potential of priming agents, duration of treatment and environmental features. Basically priming is physiological advancement of seeds, and it involves the initiation of pre-germinative metabolisms through soaking of seeds in water or solution of other conventional priming agents under controlled condition. But, adjusting of the priming protocols by accurate timing to stop the treatment followed by rapid drying is of major importance to overcome the problem of seed storability due to prolonged treatment. The use of hydrotime analysis or digital image technology has been specified to be useful for optimization of priming protocols. As an alternative to the conventional methods and under the context of contemporary issues of agricultural pollution, the use of physical methods or nanoparticles for seed priming has been evidenced to be advantageous in several aspects. Though these latest methods of priming are receiving great attention by researchers in recent times, the detailed physiological and molecular mechanisms of seed priming with physical methods and/or nanoparticles and their impact on crop plants and environment as well as on human health still remain to be fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari T, Kundu S, Subba Rao A (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8):809–816

    Google Scholar 

  • Afzal S, Nadeem A, Zahoor A, Qaiser M (2006) Role of seed priming with zinc in improving the hybrid maize (Zea mays) yield. Am-Eurasian J Agric Environ Sci 13:301–306

    Google Scholar 

  • Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effect of seed priming on germination and emergence traits of two soybean cultivars under salinity stress. Int Res J Appl Basic Sci 3:234–241

    CAS  Google Scholar 

  • Aladjadjiyan A (2012) Physical factors for plant growth stimulation improve food quality. In: Aladjadjiyan A (ed) Food production-approaches, Challenges and tasks. InTech, Rijeka, pp 145–168

    Chapter  Google Scholar 

  • Al-Enezi N, Al-Bahrany A, Al-Khayri J (2012) Effect of X-irradiation on date palm seed germination and seedling growth. Emirates J Food Agric 24:415–424

    Google Scholar 

  • Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, Bhardwaj J (2012) Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys 49:63–70

    PubMed  CAS  Google Scholar 

  • Anese S, Da Silva EAA, Davide AC, Rocha Faria JM, Soares GCM, Matos ACB, Toorop PE (2011) Seed priming improves endosperm weakening, germination, and subsequent seedling development of Solanum lycopersicum St. Hil. Seed Sci Technol 39:125–139

    Article  Google Scholar 

  • Araujo SS, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:646. https://doi.org/10.3389/fpls.2016.00646

    Article  PubMed Central  Google Scholar 

  • Baby SM, Narayanaswamy GK, Anand A (2011) Superoxide radical production and performance index of Photosystem II in leaves from magneto primed soybean seeds. Plant Signal Behav 6:1635–1637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, Włodarczyk T (2015) The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant 37:59. https://doi.org/10.1007/s11738-015-1802-2

    Article  CAS  Google Scholar 

  • Banik S, Bandyopadhyay S, Ganguly S (2003) Bio effects of microwave – a brief review. Bioresour Technol 87:155–159

    Article  PubMed  CAS  Google Scholar 

  • Basra SMA, Farooq M, Khaliq A (2003) Comparative Study of Pre-Sowing Seed Enhancement Treatments in Fine Rice (Oryza sativa L.). Pakistan J Life Soc Sci 1:21–25

    Google Scholar 

  • Basra SMA, Farooq M, Tabassum R (2005) Physiological and biochemical aspects of seed vigour enhancement treatments in fine rice (Oryza sativa L.). Seed Sci Technol 33:25–29

    Article  Google Scholar 

  • Bassi G (2005) Seed priming for in-vigourating late sown wheat (Triticum aestivum). Crop Improv 32:121–123

    Google Scholar 

  • Bassi G, Sharma S, Gill BS (2011) Pre-sowing seed treatment and quality in-vigouration in soybean (Glycine max (L) Merrill). Seed Res 31:81–84

    Google Scholar 

  • Benamar A, Tallon C, Macherel D (2003) Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Technol 13:35–45

    Article  CAS  Google Scholar 

  • Bera AK, Maity U (2003) Enhancing yield potential in rice by pre-sowing electric current treatment of rice gain. Plant Arch 4(1):17–24

    Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj J, Anand A, Nagarajan S (2012) Biochemical and biophysical changes associated with magneto priming in germinating cucumber seeds. Plant Physiol Biochem 57:67–73. https://doi.org/10.1016/Jplaphy.2012.05.008

    Article  PubMed  CAS  Google Scholar 

  • Bilalis DJ, Katsenios N, Efthimiadou A, Karkanis A, Efthimiadis P (2012) Investigation of pulsed electromagnetic field as a novel organic pre-sowing method on germination and initial growth stages of cotton. Electromagn Biol Med 31:143–150. https://doi.org/10.3109/15368378.2011.624660

    Article  PubMed  Google Scholar 

  • Bradford KJ, Still DW (2004) Application of hydrotime analysis in seed testing. Seed Tech 26:75–85

    Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Capron I, Corbineau F, Dacher F, Job C, Côme D, Job D (2000) Sugar beet seed priming: effects of priming on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci Res 10:243–254

    Article  CAS  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestova E, Westohoff P, Van Dorselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugar beet. Proteomics 11:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Chen K (2011) Antioxidants and dehydrin metabolism associated with osmopriming-enhanced stress tolerance of germinating spinach (Spinacia oleracea L. cv. Bloomsdale) seeds. Graduate theses and dissertations, Paper 10471, Iowa State University

    Google Scholar 

  • Chen D, Gunawardena TA, Naidu BP, Fukai S, Basnayake J (2005) Seed treatment with gibberellic acid and glycine-betaine improves seedling emergence and seedling vigour of rice under low temperature. Seed Sci Technol 33:471–479

    Article  Google Scholar 

  • Chen K, Arora R, Arora U (2010) Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed Sci Technol 38:45–57

    Article  Google Scholar 

  • Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot 63:4107–4121

    Article  PubMed  CAS  Google Scholar 

  • Chiu KY, Chuang SJ, Sung JM (2006) Both anti-oxidant and lipid-carbohydrate conversion enhancements are involved in priming-improved emergence of Echinacea purpurea seeds that differ in size. Sci Hortic 108:220–226

    Article  CAS  Google Scholar 

  • Corbineau F, Özbingol N, Vineland D, Côme D (2000) Improvement of tomato seed germination by osmopriming as related to energy metabolism. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed biology advances and applications: proceedings of the sixth international worshop on seeds. Merida, Mexico. CABI, Cambridge.; 2000, pp 467–474

    Chapter  Google Scholar 

  • De Micco V, Paradiso R, Aronne G, De Pascale S, Quarto M, Arena C (2014) Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. Sci World J 2014:428141. https://doi.org/10.1155/2014/428141

    Article  Google Scholar 

  • Dell’Aquila A (2009) New perspectives for seed germination testing through digital imaging technology. Open Agric J 3:37–42

    Article  Google Scholar 

  • Edmondson JL, Davies ZG, Gaston KJ, Leake JR (2014) Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. J Appl Ecol 51:880–889. https://doi.org/10.1111/1365-2664.12254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elouaer MA, Hannachi C (2012) Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. Eur Asian J Bio Sci 6:76–84

    Article  CAS  Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadesh M, Farhangfar M (2013) Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzyme activity and nutritional status of soybean. Int J Agron Plant Prod 4:610–619

    Google Scholar 

  • Farahbakhsh H (2012) Germination and seedling growth in primed and primed seeds of fennel as affected by reduced water potential induced by NaCl. Int Res J Appl Basic Sci 3:737–744

    CAS  Google Scholar 

  • Farooq M, Basra SMA, Khan MB (2007) Seed priming improves growth of nursery seedlings and yield of transplanted rice. Arch Agron Soil Sci 53:311–322

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945. https://doi.org/10.1007/s11738-009-0307-2

    Article  CAS  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Fredj MB, Zhani K, Hannachi C, Mehwachi T (2013) Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). Eur Asian J Bio Sci 7:21–29

    Article  CAS  Google Scholar 

  • Ganji-Arjenaki F, Amini-Dehghani M, Jabbari R (2011) Effects of priming on seed germination of marigold (Calendula officinalis). Adv Environ Biol 5:276–280

    Google Scholar 

  • Gelmond H (1978) In: Gupta VS (ed) Problems in crop seed germination in crop physiology. Oxford and IBH publishing Co., New Delhi, pp 1–78

    Google Scholar 

  • Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Int J Agric Plant Prod 4(11):2997–3003

    Google Scholar 

  • Ghiyasi M, Seyahjani AA, Tajbakhsh M, Amirnia R, Salehzade H (2008) Effect of osmopriming with Polyethylene glycol (8000) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress. Res J Bio Sci 3(10):1249–1251

    Google Scholar 

  • Goussous SJ, Samarah NH, Alqudah AM, Othman MO (2010) Enhancing seed germination of four crop species using an ultrasonic technique. Exp Agric 46(2):231–242

    Article  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurusinghe S, Bradford K (2001) Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Sci Res 11:121–133

    CAS  Google Scholar 

  • Haq Z, Jamil Y, Irum S, Randhawa MA, Iqbal M, Amin N (2012) Enhancement in germination, seedling growth and yield of radish (Raphanus sativus) using seed pre-sowing magnetic field treatment. Pol J Environ Stud 21(2):369–374

    Google Scholar 

  • Hegazi AZ, Hamideldin N (2010) The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. J Hortic For 2:38–51

    Google Scholar 

  • Hill H, Bradford KJ, Cunningham J, Taylor AG (2008) Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hortic 782:135–141

    Article  Google Scholar 

  • Hoseini M, Baser S, Jahandideh E (2013) Response of fennel to priming techniques. Ann Rev Res Biol 3:124–130

    CAS  Google Scholar 

  • Hu J, Zhu ZY, Song WJ, Wang JC, Hu WM (2005) Effects of sand priming on germination and field performance in direct-sown rice (Oryza sativa L.). Seed Sci Technol 33:243–248

    Article  Google Scholar 

  • Iuliana C, Caprita R, Giancarla V, Sorina R (2013) Response of barley seedlings to microwaves at 2.45GHz. Sci Pap Anim Sci Biotechnol 46:185–191

    Google Scholar 

  • Jakubowski T (2010) The impact of microwave radiations at different frequencies on the weight of seed potato germs and crop of potato tubers. Agric Eng 6:57–64

    Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kadiri M, Hussaini MA (1999) Effect of hardening pre-treatment on vegetative growth, enzyme activities and yield of Pennisetum americanum and sorghum bicolour L. Glob J Pure Appl Sci 5:179–183

    CAS  Google Scholar 

  • Kata LP, Bhaskaran M, Umarani R (2014) Influence of priming treatments on stress tolerance during seed germination of rice. In J Agric Environ Biotechnol 7:225–232

    Article  Google Scholar 

  • Kulkarni GN, Eshanna MR (1988) Effect of pre-soaking of corn seed on seed quality. Seed Res 16:37–40

    Google Scholar 

  • Kumari N, Rai PK, Bara BM, Singh I (2017) Effect of halo priming and hormonal priming on seed germination and seedling vigour in maize (Zea mays L.) seeds. J Pharm Phytochem 6(4):27–30

    Google Scholar 

  • Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3(7):874–881

    CAS  Google Scholar 

  • Li F, Wu X, Tsang E, Cutler AJ (2005) Transcriptional profiling of imbibed Brassica napus seed. Genomics 86:718–730. https://doi.org/10.1016/Jygeno.2005.07.006

    Article  PubMed  CAS  Google Scholar 

  • Li X, Cai J, Liu F, Dai T, Cao W, Jiang D (2014) Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol Biochem 82:34–43

    Article  PubMed  CAS  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:68–172

    Google Scholar 

  • Mahajan G, Sarlach RS, Japinder S, Gill MS (2011) Seed priming effects on germination, growth and yield of dry direct-seeded rice. J Crop Improv 25:409–417

    Article  Google Scholar 

  • Maity JP, Mishra D, Chakraborty A, Saha A, Santra SC, Chanda S (2005) Modulation of some quantitative and qualitative characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiat Phys Chem 74:391–394. https://doi.org/10.1016/Jradphyschem.2004.08.005

    Article  CAS  Google Scholar 

  • Marcu D, Damian G, Cosma C, Cristea V (2013) Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J Biol Phys 39:625–634. https://doi.org/10.1007/s10867-013-9322-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maske VG, Dotale RD, Sorte PN, Chore CN (1997) Germination, root and shoot studies in soybean as influenced by GA3 and NAA. J Soils Crops 7:147–149

    Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2012) Trichoderma harzianum enhances antioxidant defence of tomato seedlings and resistance to water deficit. Mol Plant – Microbe Interact 25:1264–1271

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  PubMed  CAS  Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Meena RP, Sendhil R, Tripathi SC, Chander S, Chhokar RS, Sharma RK (2013) Hydro-priming of seed improves the water use efficiency, grain yield and net economic returns of wheat under different moisture regimes. SAARC J Agric 11:149–159

    Google Scholar 

  • Miano AC et al (2015) Effect of ultrasound technology on barley seed germination and vigour. Seed Sci Technol 43:297–302

    Article  Google Scholar 

  • Mirshekari B, Hokmalipour S, Sharifi RS et al (2012) Effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on yield and dry matter accumulation of spring barley (Hordeum vulgare L.) at various levels of nitrogen and phosphorus fertilizers. J Food Agric Environ 10:314–320

    CAS  Google Scholar 

  • Murungu FS, Chiduza C, Nyamuga P, Clark LJ, Whalley WR, Finch WE (2004) Effects of on-farm seed priming on consecutive daily sowing occasion on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop Res 89:49–57

    Article  Google Scholar 

  • Mwale SS, Hamusimbi C, Mwansa K (2003) Germination, emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Sci Technol 31:199–206

    Article  Google Scholar 

  • Nagar R, Dadlani PM, Sharma SP (1998) Effect of hydro-priming on field emergence and crop growth of maize genotypes. Seed Sci Res 26:1–5

    Google Scholar 

  • Osburn RM, Schroth MN (1989) Effect of osmopriming sugar beet deed on exudation and subsequent damping-off caused by Pythium ultimum. Phytopathology 78:1246–1250

    Article  Google Scholar 

  • Ouhibi C, Attia H, Rebah F, Msilin N, Chebbi M, Aarrouf J et al (2014) Salt stress mitigation by seed priming with UV-C in lettuce plants, growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83:126–133

    Article  PubMed  CAS  Google Scholar 

  • Pandita VK, Anand A, Nagarajan S (2007) Enhancement of seed germination in hot pepper following presowing treatments. Seed Sci Technol 35:282–290

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nano-technologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Pill WG, Crossan CK, Frett JJ, Smith WG (1994) Matric and osmotic priming of Echinacea purpurea (L.) Moench seeds. Sci Hortic 59:37–44

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakara P, Sreenivasulua Y, Lathaa P, Munaswamya V, Raja Reddya K, Sreeprasad TS, Sajanlalb PR, Pradeepb T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Pretty JN, Noble AD, Bossio D, Dixon J, Hine RE, Penning De Vries FWT et al (2006) Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol 40:1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Zhang L, Wang L, Xu H, Jin Q, Jiao Z (2015) Pre-treatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicol Environ Saf 115:243–249

    Article  PubMed  CAS  Google Scholar 

  • Rahman MA, Yasmin F (1993) Effects of electric current treatments to seeds on bottle gourd: seed NPK and seedling leaf pigments. Chittagong Univ Stud Part II: Sci 17(2):37–41

    CAS  Google Scholar 

  • Rahman M, Ali J, Masood M (2015) Seed priming and Trichoderma application: a method for improving seedling establishment and yield of dry direct seeded boro (winter) rice in Bangladesh. Univ J Agric Res 3(2):59–67

    Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  PubMed  CAS  Google Scholar 

  • Reddy MVB, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47:67–72

    Article  Google Scholar 

  • Ruan S, Xue Q, Tylkowska K (2002) Effects of seed priming on germination and health of rice (Oryza sativa L.) seeds. Seed Sci Technol 30:451–458

    Google Scholar 

  • Sadeghian SY, Yavari N (2004) Effect of water deficient stress on germination and early seedling growth in sugar beet. J Agron Crop Sci 190:138–144

    Article  Google Scholar 

  • Salehi M, Tamaskani F (2008) Pretreatment effect of nanosilver on germination and seedling growth of wheat under salt stress. Proceeding of 11th Iranian Congress in Seed Sciences and Echnology. Gorgan, Iran

    Google Scholar 

  • Salehzade H, Shishvan MI, Ghiyasi M, Forouzin F, Siyahjani AA (2009) Effect of seed priming on germination and seedling growth of wheat [Triticum aestivum (L).]. Res J Biol Sci 4:629–631

    Google Scholar 

  • Sarika G, Basavaraju GV, Bhanuprakash K, Chaanakeshava V, Paramesh R, Radha BN (2013) Investigation on seed viability and vigour of aged seed by priming in French bean. Veg Sci 40:169–173

    Google Scholar 

  • Schwember AR, Bradford KJ (2005) Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. Hortic Sci 40:778–781

    Google Scholar 

  • Sharifi RS (2011) Study of grain yield and some of physiological growth indices in maize (Zea mays L.) hybrids under seed biopriming with plant growth promoting rhizobacteria (PGPR). J Food Agric Environ 189:3–4

    Google Scholar 

  • Sharma S, Gupta A, Shekhar J (2010) Growth parameters in late sown rainfed wheat as influenced by seed priming and foliar applied growth regulators. J Res SKUAST 1:63–69

    Google Scholar 

  • Sharma AD, Rathore SVS, Srinivasan K, Tayagi R (2013) Comparison of various seed priming method for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hortic 165:75–81

    Article  CAS  Google Scholar 

  • Shekari F, Mustafavi SH, Abbasi A (2015) Sonication of seeds increase germination performance of sesame under low temperature stress. Acta Agric Slov 105:203–212

    Article  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A (2011) Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics 32:474–484

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui A, Dawar S, Javed Zaki M, Hamid N (2011) Role of ultraviolet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pak J Bot 43:2221–2224

    Google Scholar 

  • Singh S, Bawa S, Singh S, Sharma SC, Kumar V (2014) Effect of seed priming with molybdenum on performance of rainfed chickpea (Cicer arietinum L.). J Res Punjab Agric Univ 51:124–127

    Google Scholar 

  • Singh H, Jassal RK, Keng JS, Sandhu SS, Kang H, Grewal K (2015) Seed priming techniques in field crops – a review. Agric Rev 36(4):251–264

    Google Scholar 

  • Srivastava AK, Bose B (2012) Effect of nitrate seed priming on phenology, growth rate and yield attributes in rice (Oryza sativa L.). Vegetos 25:174–181

    Google Scholar 

  • Talei D, Valdiani A, Maziah M, Mohsenkhah M (2013) Germination response of MR219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. Sci World J 2013:408026. https://doi.org/10.1155/2013/408026

    Article  CAS  Google Scholar 

  • Tarquis AM, Bradford KJ (1992) Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seed. J Exp Bot 43:307–317

    Article  Google Scholar 

  • Taylor AG, Allen PS, Bonnett MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8(2):245–256. https://doi: 10.1017/S0960258500004141

    Google Scholar 

  • Theophrastus. Enquiry into plants, Book VII, I.6

    Google Scholar 

  • Upadhyaya H, Begum L, Dey B, Nath PK, Panda SK (2017) Impact of calcium phosphate nanoparticles on rice plant. J Plant Sci Phytopathol 1:001–0010

    Article  Google Scholar 

  • Valadkhan M, Mohammadi K, Nezha MTK (2015) Effect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Biol Forum – Int J 7(2):599–602

    CAS  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Vazirimehr MR, Ganjali HR, Rigi K, Keshtehgar A (2014) Effect of seed priming on quantitative traits corn. Int J Plant Sci 4:134–140

    Google Scholar 

  • Yaldagard M, Mortazavi SA, Tabatabaie F (2008) Influence of ultrasonic stimulation on the germination of barley seed and its alpha-amylase activity. Afr J Biotech 7:2465–2471

    CAS  Google Scholar 

  • Yan M (2015) Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S Afr J Bot 99:88–92

    Article  CAS  Google Scholar 

  • Zahedifar M (2013) Corn germination and seedling characteristics as influenced by seed- priming with potassium nano-chelate and potassium sulfate fertilizers under salinity stress conditions. Thai J Agric Sci 46(4):219–229

    Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    Article  CAS  Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y, Zhu K, Lu F, Zhang Z, Zou J (2015) Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolour L. Moench) seedlings under suboptimal soil moisture environments. PLoS One 10(10):e0140620. https://doi.org/10.1371/journal.pone.0140620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou YG, Yang YD, Qi YG, Zhang ZM, Wang XJ, Hu XJ (2002) Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 31:22–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, P. (2018). Seed Priming: New Vistas and Contemporary Perspectives. In: Rakshit, A., Singh, H. (eds) Advances in Seed Priming . Springer, Singapore. https://doi.org/10.1007/978-981-13-0032-5_1

Download citation

Publish with us

Policies and ethics