Skip to main content

Ionic Basis of Salt Tolerance in Plants: Nutrient Homeostasis and Oxidative Stress Tolerance

  • Chapter
  • First Online:

Abstract

Salinity, recognized as a major threat in agriculture, causes 4.0–6.3% yield loss annually across the world. The problem is aggravated due to increasing irrigation with suboptimal quality of irrigation water and more salinization of coastal area due to the rise in sea level because of climate change. In saline soil, excessive concentrations of Na+ and Cl impair absorption of other beneficial ions such as K+ and Ca2+ that in turn inhibit plant growth and productivity. Maintenance of cellular K+ level and K+/Na+ ratio is still considered the most important factor for salt tolerance. Under high-Na+ environment, excess Na+ competes with K+ thereby hindering its uptake. Tolerant plants by employing a number of strategies restrict Na+ movement to young meristematic tissues and allow greater movement and/or tissue retention of K+ to physiologically more active tissues. Under salt stress different K+- and Na+-specific transporters, viz. SOS, NHX, and HKT family transporters (regulate cellular Na+ movement) and HAK, AKT, KT, and KUP (regulate K+ movement), either by upregulation or downregulation, control the cellular ion homeostasis and salt tolerance in plants. SOS1, a plasma membrane-bound Na+/H+ antiporter, mostly active in root tissue, removes the excess salt from the plant body by pumping them back to the rhizosphere in an energy-dependent process. Tonoplast-bound vacuolar Na+/H+ antiporters (NHX family transporters) play crucial role in Na+ compartmentalization inside the vacuole in mature cell in both root and leaf tissues. Storing excess salts in vacuole imparts tolerance in multifaceted manner, viz. imparting tissue and osmo-tolerance. Biosynthesis of organic osmolytes, a more energy-expensive process, is sometimes substituted by the accumulation of excess Na+ in non-active tissues under salt stress. Improved Ca2+ status inside the plant tissue is another important factor associated with salt tolerance and acts as a key signalling molecule to initiate Na+ exclusion. Several QTLs and miRNAs were reported to impart salt tolerance in several crops. Managing salinity beyond crop improvement strategies was also deliberated, e.g. lowering salt effect through K+ supplementation and phytohormones, etc. In this compilation, emphasis has been given on how nutrient/ionic imbalance causes deleterious effects on plants under saline conditions and what are the possible adaptive strategies plants employ to maintain the ionic homeostasis in saline environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    PubMed  PubMed Central  CAS  Google Scholar 

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Akbar M, Yabuno T (1977) Breeding saline-resistant varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Jpn J Breed 27:237–240

    Article  Google Scholar 

  • Allen GJ, Wyn-Jones RG, Leigh RA (1995) Sodium transport in plasma membrane vesicles isolated from wheat genotypes with differing K /Na discrimination traits. Plant Cell Environ 18:105–115

    Article  CAS  Google Scholar 

  • Almeida P, Katschnig D, de Boer AH (2013) HKT transporters—state of the art. Int J Mol Sci 14:20359–20385. https://doi.org/10.3390/ijms141020359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. https://doi.org/10.1590/1678-4685-gmb-2016-0106

  • Amato M, Ladd JN (1994) Application of the ninhydrin reactive N assay for microbial biomass in acid soils. Soil Biol Biochem 26:1109–1115

    Article  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Amjad M, Akhtar J, Haq MAU, Imran S, Jacobsen SE (2014) Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk J Biol 38:208–218

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    Article  PubMed  CAS  Google Scholar 

  • Arshadullah M, Ali A, Hyder SI, Mahmood IA, Zaman BU (2014) Effect of different levels of foliar application of potassium on Hysun-33 and Ausigold-4 sunflower (Helianthus annuus L.) cultivars under salt stress. Pak J Sci Indust Res Series B: Biol Sci 57:1–4

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Bhaduri D, Meena HN, Chakraborty K (2016) Variation in phosphorus accumulation in groundnut cultivars as influenced by water salinity. Legum Res 39:215–220

    Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium- induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RLFP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Brandon C, Homman K (1995) The cost of inaction: valuing the economy-wide cost of environmental degradation in India. The World Bank, New Delhi

    Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol. https://doi.org/10.5402/2012/927436

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    Article  CAS  PubMed  Google Scholar 

  • Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122:1387–1398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caines AM, Shennan C (1999) Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiol Biochem 37:569–576

    Article  CAS  Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012a) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012b) Salinity induced expression of pyrrolline-5-carboxylate synthetase determine salinity tolerance in Brassica spp. Acta Physiol Plant 34:1935–1941

    Article  CAS  Google Scholar 

  • Chakraborty K, Singh AL, Bhaduri D, Sairam RK (2013) Mechanism of salinity stress tolerance in crop plants and recent developments. In: Hemantaranjan A (ed) Advances in plant physiology, vol 14. Scientific Publishers, Jodhpur, pp 466–496

    Google Scholar 

  • Chakraborty K, Bishi SK, Goswami N, Singh AL, Zala PV (2016a) Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environ Exp Bot 128:79–90

    Article  CAS  Google Scholar 

  • Chakraborty K, Sairam RK, Bhaduri D (2016b) Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen, and micronutrients in Brassica spp. J Plant Nutr 39:1026–1037

    Article  CAS  Google Scholar 

  • Chakraborty K, Bhaduri D, Meena HN, Kalariya K (2016c) External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol Biochem 103:143–153

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Eyles A, Shabala S (2016d) Evaluating relative contribution of osmo- and tissue-tolerance mechanisms towards salinity stress tolerance in three Brassica species. Physiol Plant 158:135–151

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016e) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774

    CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta-Gene Regul Mech 1819:120–128

    Article  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2010) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893

    Article  PubMed  CAS  Google Scholar 

  • Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7:e39865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227

    Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Degl’Innocenti E, Hafsi C, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  PubMed  CAS  Google Scholar 

  • Dregne H, Kassas M, Rosanov B (1991) A new assessment of the world status of desertification. Desertification Control Bull 20:6–18

    Google Scholar 

  • Dubcovsky J, María GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  PubMed  CAS  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of Alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8:1751–1773

    Article  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  PubMed  CAS  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • FAO (2017) http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2014) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta-Gene Str Expr 1446:149–155

    Article  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188

    Article  PubMed  CAS  Google Scholar 

  • Gama PBS, Tanaka K, Eneji A, Eltayeb AE, Elsiddig K (2009) Salt induced stress effects on biomass, photosynthetic rate and reactive oxygen species scavenging enzyme accumulation in common bean. J Plant Nutr 32:837–854

    Article  CAS  Google Scholar 

  • Gao R, Duan K, Guo G, Du Z, Chen Z, Li L, He T, Lu R, Huang J (2013) Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage. Int J Genomics 2013:1–19. https://doi.org/10.1155/2013/972852

    Article  CAS  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grifasi P, Alpier SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96:1480–1485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. Univ. of New South Wales Press, Ltd., Canberra

    Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Noctor G, Knight M, Foyer CH (2004) Regulation of calcium signaling and gene expression by glutathione. J Exp Bot 55:1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, InduRupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  • Gorham J (1992) Salt tolerance of plants. Sci Prog (1933-) 76:273–285

    Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Dissertation, University of the Philippines, Los Baños

    Google Scholar 

  • Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta NK, Meena SK, Gupta S, Khandelwal SK (2002) Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance. Photo-Dermatology 40:535–539

    CAS  Google Scholar 

  • Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054

    Article  CAS  Google Scholar 

  • Hadi MR, Khiyam-Nekoie SM, Khavarinejad R, Khosh Kholgh Sima NA, Yavari P (2008) Accumulation and role of ions (Ca2+, Mg2+, SO4 −2) on salt tolerance in Triticum turgidum L. J Biol Sci 8:143–148

    Article  CAS  Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A 97:3735–3740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handbook of Agriculture (2011) Indian Council of Agricultural Research (ICAR), New Delhi. 1617 p. ISBN: 978-8171640966

    Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957. https://doi.org/10.3389/fpls.2016.00957

    Article  PubMed  PubMed Central  Google Scholar 

  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct Plant Biol 37:634–645

    Article  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Haro R, Banuelos MA, Senn MAE, Barrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Bio 51:463–499

    Article  CAS  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9(3):e92598. https://doi.org/10.1371/journal.pone.0092598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx components into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC ) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu S, Tao H, Qian Q, Guo L (2012) Genetics and molecular breeding for salt-tolerance in rice. Rice Genomics Genet 3:38–39

    Google Scholar 

  • Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns RA (2006) Sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iterbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit of paraquat. Plant Physiol 161:173–181

    Article  Google Scholar 

  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conejero G, Rodriguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C et al (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janicka-Russak M, Kłobus G (2007) Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol 164:295–302

    Article  PubMed  CAS  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  PubMed  CAS  Google Scholar 

  • Jiang XY, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31:4359–4370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin ZM, Wang CH, Liu ZP, Gong WJ (2007) Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation. Process Biochem 42:710–714

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Akahori T, Ashikari M, Maesshima M (2005) Expression of the vacuolar Ca2+/H+ exchanger, OsCAX1a, in rice: cell and age specificity of expression and enhancement by Ca2+. Plant Cell Physiol 47:96–106. https://doi.org/10.1093/pcp/pci227

    Article  PubMed  CAS  Google Scholar 

  • Kanmani E, Ravichandran V, Sivakumar R, Senthil A, Surendar KK, Boominathan P (2017) Influence of plant growth regulators on physiological traits under salinity stress in contrasting rice varieties (Oryza sativa L.) Int J Curr Microbiol App Sci 6:1654–1661

    Article  Google Scholar 

  • Khan HR, Ashraf M, Shahzad SM, Imtiaz M, Aziz A, Piracha MA, Siddiqui AR (2016) Additional application of plant nutrients with farm yard manure for improving the adaptation of cotton crop to salinity stress. J Appl Agric Biotechnol 1:48–57

    Google Scholar 

  • Khong GN, Richaud F, Coudert Y, Pati PK, Santi C, Périn C, Breitler JC, Meynard D, Vinh DN, Guiderdoni E, Gantet P (2008) Modulating rice stress tolerance by transcription factors. Biotechnol Genet Eng Rev 25:381–404

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Arihara J, Nakayama T, Nakayama N, Shimada S, Usui K (2004) Antioxidative responses and their relation to salt tolerance in Echinochloa oryzicola vasing and Steraia viridis (L.) Beauv. Plant Growth Regul 44:87–92

    Article  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Elling AA, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69

    Article  CAS  Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Mosa K (2015) Ion transporters: a decisive component of salt stress tolerance in plants. In: Wani SH, Hossain MA (eds) Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, Boca Raton, pp 373–390

    Chapter  Google Scholar 

  • Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci U S A 107:7089–7094

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  PubMed  CAS  Google Scholar 

  • Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21:1607–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317

    Article  PubMed  CAS  Google Scholar 

  • Maathuis F (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467. https://doi.org/10.3389/fpls.2014.00467

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp., PCC 6803. Proc Natl Acad Sci U S A 100:9061–9066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition in higher plants. Academic, London, pp 477–542

    Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants (3rd). ISBN: 978-0-12-384905-2. Academic, Cambridge, MA

    Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciablades B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTI1. FEBS Lett 531:57–161

    Article  Google Scholar 

  • Melo YL, Dantas CVS, Lima-Melo Y, Maia JM, Macêdo CECD (2017) Changes in osmotic and ionic indicators in Ananas comosus (L.) cv. MD gold pre-treated with phytohormones and submitted to saline medium. Rev Bras Frutic 39:e-155

    Google Scholar 

  • Mian A, Oomen RJ, Isayenkow S, Sentenac H, Maathuis FJ, Very AA (2011) Overexpression of a Na+ and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  PubMed  CAS  Google Scholar 

  • Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168:2–18

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AT, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In: Progress in plant nutrition: plenary lectures of the XIV international plant nutrition colloquium. Springer, Dordrecht, pp 93–105

    Chapter  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Amador B, Jones HG, Kaya C, Aguilar RL, García-Hernández JL, Troyo-Diéguez E, Ávila-Serrano NY, Rueda-Puente E (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environ Exp Bot 58:188–196

    Article  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta- Gene Regul Mech 1819:97–103

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249:163–166

    Article  CAS  Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Nelson M, Maredia M (2001) Environmental impacts of the CGIAR: an assessment

    Google Scholar 

  • Nouri H, Borujeni SC, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment; a review on halophyte remediation. Process Saf Environ Prot 107:94–107

    Article  CAS  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim M, Kim YK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SIK, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. J Plant Biotechnol 5:646–656

    Article  CAS  Google Scholar 

  • Oldeman LR, Hakkeling TA, Sombroek WG (1991) World map of the status of human induced soil degradation: an explanatory note. International Centre and United Nations Environment Programme, Wageningen

    Google Scholar 

  • Oomen RJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2; 2/1, a K -permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762

    Article  PubMed  CAS  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alcali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Patel BB, Patel BB, Dave RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of North Gujarat. J Appl Technol Environ Sanitation 1:87–92

    Google Scholar 

  • Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  PubMed  CAS  Google Scholar 

  • Phuc DT, Minh NV, Yen HH (2016) Assessment of natural variation in OsHKT1;2 gene in rice (Oryza sativa). VNU J Sci Nat Sci Technol 32:189–193

    Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  PubMed  CAS  Google Scholar 

  • Priya P, Jain M (2013) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database 2013:bat027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893

    Article  PubMed  CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Queensland Government (1995–2017) The state of Queensland, Australia. https://www.qld.gov.au/environment/land/soil/salinity

  • Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A 99(13):9061–9066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611–2616

    Article  PubMed  PubMed Central  Google Scholar 

  • Reguera M, Bassil E, Blumwald E (2014) Intracellular NHX-type cation/H+ antiporters in plants. Mol Plant 7:261–263

    Article  PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Wei H, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M et al (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na (+) exclusion trait. J Exp Bot 62:1201–1216

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Rosales MP, Galvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 2701:1660–1663

    Article  Google Scholar 

  • Rubio MC, Bustos-Sammamed P, Clemente MR, Becana M (2009) Effects of salt stress on expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181:851–859

    Article  PubMed  CAS  Google Scholar 

  • Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M et al (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880

    Article  CAS  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano R, Culiañz-Maciá FA, Moreno V (1998) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hortic 78:261–269

    Article  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669. https://doi.org/10.1111/j.1399-3054.2007.01008.x

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses. Springer, Heidelberg, pp 87–110

    Chapter  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabala S, Bose J, Fuglsang AT, Pottosin I (2015) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot 67:1015–1031

    Article  PubMed  CAS  Google Scholar 

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ et al (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp spontaneum). Funct Integr Genomics 10:277–291

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Z, Li Y, Wang RC, Makeschine F (2005) Assessment of temporal and spatial variability of soil salinity in a coastal saline field. Environ Geol 48(2):171–178

    Article  CAS  Google Scholar 

  • Singh RK, Gregorio GB, Jain RK (2007) QTL mapping for salinity tolerance in rice. Physiol Mol Biol Plants 13:87–99

    CAS  Google Scholar 

  • Smart CC, Flores S (1997) Overexpression of d-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopsis. Plant Mol Biol 33:811–820

    Article  PubMed  CAS  Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao CS, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125:604–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun G, Stewart CN Jr, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7:e32017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  PubMed  CAS  Google Scholar 

  • Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci U S A 98:2917–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerant and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson MJ, Ocampo DM, Egdane J, Katimbang M, Singh RK, Gregorio G, Ismail M (2007) QTL mapping and marker assisted backcrossing for improved salinity tolerance in rice. In: Plant and animal genomes XV conference, San Diego, CA, pp 13–17

    Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • Umali DL (1993) Irrigation-induced salinity: a growing problem for development and the environment, vol 215. World Bank Publications, Washington, DC

    Book  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418

    Article  PubMed  CAS  Google Scholar 

  • Wang XC, Chang LL, Wang BC, Wang D, Li PH, Wang L, Yi X, Huang Q, Peng M, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The Rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168:1076–1090. https://doi.org/10.1104/pp.15.00298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wu YS, Hu YB, Xu GH (2009) Interactive effects of potassium and sodium on root growth and expression of K+/Na+ transporter genes in rice. Plant Growth Regul 57:271–280

    Article  CAS  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J et al (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913. https://doi.org/10.1371/journal.pone.0092913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.) PLoS One 7:e43079.59

    Article  Google Scholar 

  • Xu Y, Zhou Y, Hong S, Xia Z, Cui D, Guo J, Xu H, Jiang X (2013) Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS One 8:e78098. https://doi.org/10.1371/journal.pone.0078098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  PubMed  CAS  Google Scholar 

  • Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res 3:316–323

    Article  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Horie T, Xue SW, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8:e83011. https://doi.org/10.1371/journal.pone.0083011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, K. et al. (2018). Ionic Basis of Salt Tolerance in Plants: Nutrient Homeostasis and Oxidative Stress Tolerance. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_14

Download citation

Publish with us

Policies and ethics