Skip to main content

Response of Plants to Salinity Stress and the Role of Salicylic Acid in Modulating Tolerance Mechanisms: Physiological and Proteomic Approach

  • Chapter
  • First Online:
Biotic and Abiotic Stress Tolerance in Plants

Abstract

Salinity is one of the most consequential stresses, which limits the productivity of agricultural crops and affects germination, plant strength, and crop yield. High salinity affects plants in several ways, such as water stress, ion toxicity, oxidative stress, alteration of metabolic processes, nutritional disorders, membrane disorganization, and reduction of cell division, expansion, and genotoxicity.

Together all these effects reduce plant growth, development and survival. The mechanisms of genetic control by which plants tolerate the salt stress are very complex and have not yet properly understood. Plants have evolved several mechanisms to acclimatize to salinity. Several biomolecules have been discovered within plants that modulate mechanisms to effectively deal with salinity stress. One such compound is salicylic acid which has been extensively studied for its role in biotic stress and recently is in focus for abiotic stress tolerance research.

A fundamental biological understanding and knowledge of the effects of salt stress on plants is necessary to provide additional information for the dissection of the plant response to salinity. The present chapter reviews plant response to salinity stress and the role of salicylic acid in modulating tolerance mechanisms especially at the molecular level. Recent advances in proteomic studies for elucidation of plant response are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    Article  PubMed  CAS  Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694

    Article  PubMed  CAS  Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Alamillo JK, Saénz P, Garcίa JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of Plum pox virus in tobacco. Plant J 48:217–227

    Article  PubMed  CAS  Google Scholar 

  • Albert R (1975) Salt regulation in halophytes. Oecologia 21(1):57–71

    Article  PubMed  Google Scholar 

  • Al-Doss AA, Smith SE (1998) Registration of AZ-97MEC and AZ-97MEC-ST very non-dormant alfalfa germplasm pools with increased shoot weight and differential response to saline irrigation. Crop Sci 38:568–568

    Article  Google Scholar 

  • Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol Bio Syst 9:1498–1510

    CAS  Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14(7–8–9):843–853

    Article  PubMed  Google Scholar 

  • Amaral DOJ, Lima MMA, Resende LV, Silva M (2008) Differential gene expression, induced by salicylic acid and Fusarium oxysporum f. sp. Lycopersici infection, in tomato. Pesq Agropec Bras 43(8):1017–1023

    Article  Google Scholar 

  • Amer ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Asch F, Dingkuhn M, Miezan K, Doerffling K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Assmann SM (2005) G proteins Go green: a plant G protein signaling FAQ sheet. Science 310:71–73

    Article  PubMed  CAS  Google Scholar 

  • Bar Y, Apelbaum A, Kafka fi U, Goren R (1997) Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J Plant Nutr 20:715–731

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  PubMed  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava A, Narayan O, Rai L (2008) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botella MA, Quesada MA, Hasegawa PM, Valpuesta V (1994) Nucleotide sequences of two peroxidase genes from tomato (Lycopersicon esculentum). Plant Physiol 103:665–666

    Article  Google Scholar 

  • Breviario D, Genga A (2013) Stress response in rice. J Rice Res 2(1):100e104

    Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187(3):335–347

    Google Scholar 

  • Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosys Environ 121:233–244

    Article  Google Scholar 

  • Carpici EB, Celik N, Bayram G (2009) Effects of salt stress on germination of some maize (Zea mays L.) cultivars. Afr J Biotechnol 8:4918–4922

    CAS  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Metraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  PubMed  CAS  Google Scholar 

  • Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2047

    Article  CAS  Google Scholar 

  • Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42(2):387–396

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. J Exp Biotechnol 60:2005–2019

    CAS  Google Scholar 

  • Chou IT, Gasser CS (1997) Characterization of the cyclophilins gene family of Arabidopsis thaliana and phylogenetics analysis of known cyclophilins proteins. Plant Mol Biol 35:873–892

    Article  PubMed  CAS  Google Scholar 

  • Chutipaijit S, Chaum S, Sompornpailin K (2011) High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci 5:1191–1198

    CAS  Google Scholar 

  • Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 85:224–230

    Article  PubMed  CAS  Google Scholar 

  • Cueto-Ginzo AI, Serrano L, Bostock R, Ferrio JP, Rodríguez R et al (2016a) Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiol Mol Plant Pathol J 93:1–11

    Article  CAS  Google Scholar 

  • Cueto-Ginzo IA, Serrano L, Sin E, Rodrίguez R, Morales JG et al (2016b) Exogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteome. Physiol Mol Plant Pathol 96:47–59

    Article  CAS  Google Scholar 

  • Curtis D, Lehmann R, Zamore PD (1995) Translational regulation in development. Cell 81:171–178

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Cotte BVD, Langerbartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  PubMed  CAS  Google Scholar 

  • Davenport R, James R, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Bio Sci Rep 3:25–34

    Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156. https://doi.org/10.1199/tab.0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Zhou S, Hu W, Feng J, Zhang F, Chen L, Huang C, Luo Q, He Y, Yang G, He G (2013) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149(3):367–377

    PubMed  CAS  Google Scholar 

  • Derikvand H, Azadbakht A (2017) An Impedimetric sensor comprising magnetic nanoparticles-graphene oxide and carbon nanotube for the electrocatalytic oxidation of salicylic acid. J Inorg Organomet Polym Mater 27(4):901–911

    Article  CAS  Google Scholar 

  • Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM et al (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    Article  PubMed  CAS  Google Scholar 

  • Dierig DA, Shannon MC, Grieve CM (2001) Registration of WCL-SL 1 salt tolerant Lesquerella fendleri germplasm. Crop Sci 41:604–605

    Article  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7(5):547–552

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Wang X, Shang Q (2011) Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. SCI Hortic-Amst 129:629–636

    Article  CAS  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalase. J Biol Chem 271:28492–28501

    Article  PubMed  CAS  Google Scholar 

  • El-Basyouni SZ, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of Hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    Article  CAS  Google Scholar 

  • Ellis BE, Amrhein N (1971) The ‘NIH-shift’ during aromatic ortho-hydroxylation in higher plants. Phytochemistry 10:3069–3072

    Article  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Epstein E (1977) Genetic potentials for solving problems of soil mineral stress: adaptation of crops to salinity. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Agricultural Experiment Station, Ithaca, pp 73–123

    Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  PubMed  CAS  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 88:86–93

    Article  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44(4):1433–1438

    Google Scholar 

  • Farahbakhsh H, Pour AP, Reiahi N (2017) Physiological response of henna (Lawsonia inermis L.) to salicylic acid and salinity. Plant Prod Sci 20(2):237–247

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–584

    Article  CAS  Google Scholar 

  • Fariduddin Q, Khan TA, Yusuf M Aafaqee ST, Khalil RRAE (2017) Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica 1–13

    Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh A, Brimavandi T, Sturuik P (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    Article  PubMed  CAS  Google Scholar 

  • Fiol DF, Sanmarti E, Sacchi R, Kültz D (2009) A novel tilapia prolactin receptor is functionally distinct from its paralog. J Exp Biol 212:2007–2015

    Article  PubMed  CAS  Google Scholar 

  • Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct Plant Biol 33(4):357–366

    Article  CAS  PubMed  Google Scholar 

  • Flower TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants-where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  PubMed  CAS  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49(6):742–750

    Article  CAS  Google Scholar 

  • Gao P, Bai X, Yang L et al (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Engler A, Claes B, Villarroel R, Montagu M, Gerats T, Caplan A (1998) The expression of the salt-responsive gene salt from rice is regulated by hormonal and developmental cues. Planta 207:172–180

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Metraux JP (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147(3):1279–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gharbi E, Martinez JP, Benahmed H, Hichri I, Dovrev PI, Motyka V, Quinet M, Lutts S (2017) Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci 258:77–89

    Article  PubMed  CAS  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gilmour SJ, Aetus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13–21

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes-Filho E, Machado Lima CRF, Costa JH, Da Silva AC, Da Guia Silva Lima M, De Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Kiowa H, Cushman JC et al (2001) Genes that are uniquely stress-regulated in salt overly sensitive (SOS) mutants. Plant Physiol 126:363–375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorham J, Hardy C, Jones RGW, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D-genome of wheat. Theor Appl Genet 74(5):584–588

    Article  PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 204:460–469

    Article  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–796

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Qin Q, Quintero et al (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16(2):435–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteome 75:1867–1885

    Article  CAS  Google Scholar 

  • Hajer M, Salma W, Arafet M, Emna G, Abdellah C, Bertrand V, Stanely L, Ben AH (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS: J Integr Biol 20(3):180–190

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Asp Med 8(2):89–193

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011a) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011b) Exogenous silicon treatment alleviates salinity-induced damage in Brassica napus L. seedlings by up-regulating the antioxidant defense and methylglyoxal detoxification system. In: Proceedings of the annual meeting of the American Society of Plant Biologists, Minneapolis, MN, USA, 6–10 August 2011

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Gill R, Fujita M (2014) Drought stress responses in plants, oxidative stress, Q1 and antioxidant defense. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley-Blackwell, Weinheim, pp 209–237

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Fujita M (2017) Salicylic acid: an all-rounder in regulating abiotic stress responses in plants. In: Dr. El-Esawi M (ed) Phytohormones – signaling mechanisms and crosstalk in plant development and stress responses. InTech. https://doi.org/10.5772/intechopen.68213

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hatayama T, Takeno K (2003) The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil. J Plant Physiol 160:461–467

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Ahmad A (2007) Salicylic acid: a plant hormone. In: Janda T, Horvath E, Szalai G, Paldi E (eds) Role of salicylic acid in the induction of abiotic stress tolerance. Springer, Dordrecht, pp 91–150

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hettiarachchi GHCM, Reddy MK, Sopory SK, Chattopadhyay S (2005) Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol 46(7):1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Reg 26:290–300

    Article  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (1997) Interactive effects of salinity and macronutrient level on wheat. J Plant Nutr 20:1169–1182

    Article  CAS  Google Scholar 

  • Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots. Plant Physiol 104:803–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibrar M, Jabeen M, Tabassum J, Hussain F, Ilahi I (2003) Salt tolerance potential of Brassica juncea Linn. J Sci Tech Univ Peshawar 27:79–84

    Google Scholar 

  • Jabeen M, Ibrar M, Azim F, Hussain F, Ilahi I (2003) The effect of sodium chloride salinity on germination and productivity of Mung bean (Vigna mungo Linn.) J Sci Tech Univ Peshawar 27:1–5

    Google Scholar 

  • James R, Davenport R, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142(4):1537–1547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • James RA, Caemmerer SV, Condon AG, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35(2):111–123

    Article  CAS  PubMed  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ, Seo YW (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.) Plant Sci 167:995–1001

    Article  CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O et al (2015) NPR1-dependent salicylic acid signaling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. J Exp Bot 66(7):1865–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong M, Park S, Byun M (2001) Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3-phosphate dehydrogenase gene transfer. Mol Cell 12:185–189

    CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    Article  PubMed  CAS  Google Scholar 

  • Johnstone O, Lasko P (2001) Translational regulation and RNA localization in Drosophila oocytes and embryos. Ann Rev Genet 35:365–406

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2016) Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep 35:27–41

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kadioglu A, Saǧlam A, Terzi R, Acet T, Saruhan N (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Reg 64(1):27–37

    Article  CAS  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric 66:180–187

    Article  CAS  Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants (tasks for vegetation science), 1st edn. Springer, Amsterdam

    Google Scholar 

  • Khan N, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:1–8

    Article  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Yang SL, Shimizu K (2014) Secondary salinization and its countermeasures. In: Tsunekawa A, Liu G, Yamanaka N, Du S (eds) Restoration and development of the degraded loess plateau, China, Ecological Research Monographs. Springer, Tokyo

    Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. In: Palme K (ed) Signals and signal transduction pathways in plants. Springer, Dordrecht, pp 203–222

    Chapter  Google Scholar 

  • König J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz K (2003) Reaction mechanism of plant 2-Cys peroxiredoxin: role of the C terminus and the quaternary structure. J Biol Chem 278:24409–24420

    Article  PubMed  CAS  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18:544–554

    Article  PubMed  CAS  Google Scholar 

  • Koyro HW (2002) Ultrastructural effects of salinity in higher plants. In: Lauchli A, Luttge U (eds) Salinity: environment – plants – molecules. Kluwer, Amsterdam, pp 139–157

    Google Scholar 

  • Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A (2013) Cyclophilins: proteins in search of function. Plant Signal Behav 8(1):e22734

    Article  PubMed  CAS  Google Scholar 

  • Kundu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32(10):1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Läuchli A, Grattan S (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1993) Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    Article  CAS  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyses salicylic acid biosynthesis. Proc Natl Acad Sci U S A 92:10413–10417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5(2):144–146

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Gao Q, Wu B, Ai T, Guo X (2009) NgRDR1, an RNA-dependent RNA polymerase isolated from Nicotiana glutinosa, was involved in biotic and abiotic stresses. Plant Physiol Biochem 47:359–368

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2013) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1–2):19–36

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Yin LN, Deng XP, Wang SW, Tanaka K, Zhang SQ (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silico-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65:4747–4756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Delgado H, Scott IM (1997) Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. J Plant Physiol 151:74–78

    Article  CAS  Google Scholar 

  • Luciński R, Lucyna M, Sławomir S, Grzegorz J (2011) The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. Umultowska 89:61–614

    Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture 3:30

    Article  Google Scholar 

  • Maestre FT, Jordi C, Susana B (2007) Mechanisms underlying the interaction between Pinus halepensis and the native late-successional shrub Pistacia lentiscus in a semi-arid plantation. Ecography 27:776–786

    Article  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43(4):491–500

    Article  CAS  Google Scholar 

  • Manzoor K, Noshin I, Nazima B, Bashir A, Muhammad A (2015) Effect of salicylic acid on the growth and physiological characteristics of maize under stress conditions. J Chem Soc Pak 37(3):588–593

    CAS  Google Scholar 

  • Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J 37:209–217

    Article  PubMed  CAS  Google Scholar 

  • Mass EV (1986) Salt tolerance of plants. Appl Agric Res 1:12–26

    Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57(8):1795–1807

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mayne MB, Coleman JR, Blumwald E (1996) Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings. Plant Cell Environ 19(8):958–966

    Article  CAS  Google Scholar 

  • Metraux JP (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 7:332–334

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mhawech P (2005) 14-3-3 proteins – an update. Cell Res 15:228–236

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mimouni H, Wasti S, Manaa A et al (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis and biochemical parameters. OMICS 20(3):180–190

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity and cold stress responses by salicylic acid. Front Plant Sci 5(4):1–12

    Google Scholar 

  • Miyao M, Murata N (1989) The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex spinach. Biochim Biophys Acta 977:315–321

    Article  CAS  Google Scholar 

  • Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  PubMed  CAS  Google Scholar 

  • Multu S, Atici O, Nalbantoglu B, Mete E (2016) Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Front Life Sci 9(2):99–109

    Article  CAS  Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15(12):21803–21824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002a) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002b) Salinity, growth and phytohormones. In: Lauchli A, Luttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 271–290

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Murota KI, Oshshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotrophically cultured green tobacco cells. Plant Cell Physiol 35:107–113

    CAS  Google Scholar 

  • Mutlu F, Bozcuk S (2007) Salinity induced changes of free and bound polyamine levels in Sunflower (Helianthus annuus L.) roots differing in salt tolerance. Pak J Bot 39:1097–1102

    Google Scholar 

  • Nahar K, Hasanuzzaman M (2009) Germination, growth, nodulation and yield performance of three mungbean varieties under different levels of salinity stress. Green Farming 2:825–829

    Google Scholar 

  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  PubMed  CAS  Google Scholar 

  • Nakata M, Shiono T, Watanabe Y, Satoh T (2002) Salt stress-induced dissociation from cells of a germin-like protein with Mn-SOD activity and an increase in its mRNA in a moss, Barbula unguiculata. Plant Cell Physiol 43(12):1568–1574

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Ishida TU, Nakajima M (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Métraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    PubMed  PubMed Central  CAS  Google Scholar 

  • Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance to plant virus movement. Mol Plant Microb Interac 11(9):860–868

    Article  CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    Article  PubMed  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2016) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemeth M, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  PubMed  CAS  Google Scholar 

  • Noreen S, Ashraf M (2010) Modulation of salt (NaCl)-induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid. J Sci Food Agric 90:2608–2616

    Article  PubMed  CAS  Google Scholar 

  • Oertli JJ (1991) Nutrient management under water and salinity stress. In: Proceeding of the symposium on nutrient management for sustained productivity. Dept Soils Punjab Agric Unver Ludhiana, India, pp 138–165

    Google Scholar 

  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A et al (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8(7):998–1010

    Article  PubMed  CAS  Google Scholar 

  • Owen PA, Nickell CD, Noel GR, Thomas DJ, Frey K (1994) Registration of ‘saline’ soyabean. Crop Sci 43:1689

    Article  Google Scholar 

  • Palma F, Lluch C, Iribarne C, García-Garrido JM, Tejera García NA (2009) Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul 58(3):307–316

    Article  CAS  Google Scholar 

  • Palma F, Lluch C, Iribarne C, García-Garrido JM, Tejera García NA (2009) Combined effect of salicylic acid and salinity on some antioxidant activities, oxidative stress and metabolite accumulation in Phaseolus vulgaris. Plant Growth Regul 58(3):307-316

    Article  CAS  Google Scholar 

  • Palta JP, Farag K (2006) Methods for enhancing plant health, protecting plants from biotic and abiotic stress related injuries and enhancing the recovery of plants injured as a result of such stresses. United States Patent 7101828

    Google Scholar 

  • Pandey S, Chakraborty D (2015) Salicylic acid and drought stress response: biochemical to molecular crosstalk. In: Tripathi BN, Muller M (eds) Stress responses in plants. Springer International Publishing, Switzerland, pp 247–265

    Chapter  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plant 6(1):plu047

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18(2):167–174

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Flowers T, Moore A, Harpham N (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “Redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel BB, Patel BB, Dave RS (2011) Studies on infiltration of saline-alkali soils of several parts of Mehsana and Pata districts of North Gujarat. J Appl Technol Environ Sanit 1(1):87–92

    Google Scholar 

  • Peskan-Berghofer T, Neuwirth J, Kusnetsov V, Oelmuller R (2005) Suppression of heterotrimeric G-protein beta-subunit affects anther shape, pollen development and inflorescence architecture in tobacco. Planta 220:737–746

    Article  PubMed  CAS  Google Scholar 

  • Promila K, Kumar S (2000) Vigna radiata seed germination under salinity. Biol Plant 43:423–426

    Article  CAS  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA et al (2000) A tomato peroxidase involved in the synthesis of Lignin and Suberin. Plant Physiol 122(4):1119–1128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qureshi MI, Isra M, Abdin MZ, Iqbal M (2007) Responses of Artemisia annua L., to lead salt induced oxidative stress. Environ Exp Bot 53:185–193

    Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R et al (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramachandran S, Christensen HE, Ishimaru Y et al (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao MV, Davis RD (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Requejo R, Tena M (2006) Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 6:156–162

    Article  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338

    Article  PubMed  CAS  Google Scholar 

  • Roeder S, Dreschler K, Wirtz M et al (2009) SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol 70:535–546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogers ME, Noble CL (1992) Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. Plant Soil 146:131–136

    Article  CAS  Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil 253:187–194

    Article  CAS  Google Scholar 

  • Roh KS, Kim JK, Song SD, Chung HS, Song JS (1996) Decrease of the activation and carbamylation of rubisco by high CO2 in kidney bean. Korean J Biotech Biosci 11(3):295–302

    Google Scholar 

  • Rospert S, Dubaquié Y, Gautschi M (2002) Nascent-polypeptide-associated complex. Cell Mol Life Sci 59(10):1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Rozeff N (1995) Sugarcane and salinity – a review paper. Sugarcane 5:8–19

    Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    Google Scholar 

  • Sahar K, Amin B, Taher NM (2011) The salicylic acid effect on the Salvia officinalis L. sugar, protein and proline contents under salinity (NaCl) stress. J Stress Physiol Biochem 7(4):81–87

    Google Scholar 

  • Sakamoto N, Murata (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic. Plant Cell Environ 25(2):163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29:314–319

    Google Scholar 

  • Sanchez JC, Schaller D, Ravier E et al (1997) Please, add rest of authors translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18:150–155

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277:35–60

    Article  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci U S A 93(10):5099–5104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shavrukov Y, Gupta N, Miyazaki J et al (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. Spontaneum). Funct Integr Genom 10:277–291

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97(12):6896–6901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicas and Medicago truncatula. Plant Physiol 141:1473–1481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudhakar P, Latha P, Reddy PV (2016) Phenotyping crop plants for physiological and biochemical traits. Academic, Amsterdam

    Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Sugihara K, Hanagata N, Dubinsky Z, Baba S, Karube I (2000) Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol 41:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Suhayda CG, Giannini JL, Briskin DP, Shannon MC (1990) Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol 93:471–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML et al (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, p 306

    Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  CAS  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stress on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Sasvari Z, Gonzalez P, Friso G, Rowland E (2015) Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex. Mol Plant-Microbe Interact 28(4):379–386

    Article  PubMed  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS et al (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. Tomato DC3000. Mol Plant-Microbe Interact 20:955–965

    Article  PubMed  CAS  Google Scholar 

  • Ushimarua T, Nakagawa T, Fujioka Y, Daichoa K, Naitob M et al (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  Google Scholar 

  • Vadasserya J, Tripathib S, Prasadb R, Varmab A, Oelmullera R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vauclare P, Diallo N, Bourguignon J, Macherel D, Douce R (1996) Regulation of the expression of the glycine decarboxylase complex during pea leaf development. Plant Physiol 112:1523–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M et al (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italic L. cv. Prasad) seedlings. Plant Sci 175:631–641

    Article  CAS  Google Scholar 

  • Vlot A, Dempsey D, Klessig D (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Vysotskaya L, Hedley PE, Sharipova G, Veselov D, Kudoyarova G, Morris J, Jones HG (2010) Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plant 2010:1–8

    Article  CAS  Google Scholar 

  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R et al (2012) Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2007) Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  Google Scholar 

  • Wang C, Ma QH, Lin ZB, He P, Liu JY (2008a) Cloning and characterization of a cDNA encoding 14-3-3 protein with leaf and stem-specific expression from wheat. DNA Seq 19:130–136

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008b) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  PubMed  CAS  Google Scholar 

  • Wasti S, Mimouni H, Smiti S, Zid E, Ben Ahmed H (2012) Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. OMICS 16:200–207

    Article  PubMed  CAS  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Witzel K, Weidneri A, Surabhi G et al (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wostrikoff K, Stern DB (2009) Rubisco. In: Stern DB, Harris E (eds) The chlamydomonas source book, vol 2, 2nd edn. Academic, San Diego, pp 302–332

    Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  PubMed  CAS  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot 98:965–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Palnt Cell Rep 29:595–615

    Article  CAS  Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yan J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12:2488–2501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993a) Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol 101:1119–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993b) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  PubMed  CAS  Google Scholar 

  • Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J (2016) Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress. Biol Plant 60(4):686–694

    Article  CAS  Google Scholar 

  • Yang YN, Qi M, Mei CS (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short-term and long-term effects of salinity on leaf growth in rice (Oryza sativa L.) J Exp Bot 42:881–889

    Article  CAS  Google Scholar 

  • Yi X, McChargue M, Laborde S, Frankel L, Bricker T (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance of plants. JIRCAS Working Report, pp 25–33

    Google Scholar 

  • Yong HY, Zou Z, Kok EP, Kwan BH, Chow K et al (2014) Comparative transcriptome analysis of leaves and rootd response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int 2014:467395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D et al (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Lin HH (2008) Role of salicylic acid in plant stress. Z Naturforsch C 63(5–6):313–320

    Article  PubMed  CAS  Google Scholar 

  • Yupsanis T, Moustakas M, Domiandou K (1994) Protein phosphorylation-dephosphorylation in alfalfa seeds germinating under salt stress. J Plant Physiol 143:234–240

    Article  CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50(9):1096–1102

    Article  PubMed  CAS  Google Scholar 

  • Zahra S, Amin B, Mehdi Y (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment under salinty stress (NaCl). J Stress Physiol Biochem 6(2):4–16

    Google Scholar 

  • Zeinolabedin J (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2(1):7–10

    Google Scholar 

  • Zhang X, Chen S, Mou Z (2010) Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. J Plant Physiol 167:144–148

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Rao XL, Shi HT, Li RJ, Lu YT (2011) Overexpression of a cytosolic glyceraldehydes-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. Plant Cell Tissue Organ Cult 107:1–11

    Article  CAS  Google Scholar 

  • Zhou S, Zhang Z, Tang Q, Lan H, Li Y, Luo P (2010) Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na+/H+ antiporter AtNHX1. Biotechnol Lett 33:375–380

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2007) Plant salt stress. Wiley, Hoboken

    Book  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.) Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zorb C, Schmitt S, Neeb A, Karl S, Linder M, Schubert S (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci 167:91–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipjyoti Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saraf, R., Saingar, S., Chaudhary, S., Chakraborty, D. (2018). Response of Plants to Salinity Stress and the Role of Salicylic Acid in Modulating Tolerance Mechanisms: Physiological and Proteomic Approach. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_5

Download citation

Publish with us

Policies and ethics