Skip to main content

MicroRNA (miRNA) and Small Interfering RNA (siRNA): Biogenesis and Functions in Plants

  • Chapter
  • First Online:
Biotic and Abiotic Stress Tolerance in Plants
  • 1957 Accesses

Abstract

Small RNA was first identified in 1981 in the genetic screening of Caenorhabditis elegans. Functions of these RNA are to repress gene expression by base pairing with complementary sequences within gene. Therefore, regulation by these small RNAs is called as RNA silencing, gene silencing or RNA interference (RNAi). Till date various kinds of small RNA have been discovered and categorized on the basis of their origin, biogenesis and functions. RNase III type of ribonuclease enzymes, i.e. dicers, is involved in small RNA processing, along with many other enzymes. Small RNAs are classified broadly into two classes, microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. These small RNAs are further classified on the basis of their mechanism of gene silencing, cleavage of complementary mRNA, translational repression, transcriptional repression and DNA elimination through histone modification. These small-sized RNAs have bigger and vital roles to play in plants, which pertain to gene regulation during biotic stress and abiotic stress and development. Small RNA also plays a role in the plant defence against viruses and transposable elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16(9):927–932

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36(12):1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y et al (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154(2):757–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altuvia Y, Landgraf P, Lithwick G et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350

    Article  PubMed  CAS  Google Scholar 

  • Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18(12):3355–3369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A et al (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136(5):823–832

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV et al (2006) Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20(17):2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouché N (2010) New insights into miR398 functions in Arabidopsis. Plant Signal Behav 5(6):684–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T (2010) Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232(5):1009–1022

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25(10):481–482

    Article  PubMed  CAS  Google Scholar 

  • Chaabane SB, Liu R, Chinnusamy V et al (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41(3):1984–1997

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82(2):358–370

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30(3):323–332

    Article  PubMed  CAS  Google Scholar 

  • Copeland C, Xu S, Qi Y, Li X (2013) MOS2 has redundant function with its homolog MOS2H and is required for proper splicing of SNC1. Plant Signal Behav 8:e25372

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23(2):431–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Paoli E, Dorantes-Acosta A, Zhai J et al (2009) Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA 15(11):1965–1970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dmitriev AA, Kudryavtseva AV, Bolsheva NL et al (2017) miR319, miR390, and miR393 are involved in aluminum response in flax (Linum usitatissimum L.) Biomed Res Int 2017:4975146. https://doi.org/10.1155/2017/4975146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15(12):2219–2235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10(9):637–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116(23):4689–4693

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428(6982):485–486

    Article  PubMed  CAS  Google Scholar 

  • Fox S, Sergei F, Mockler TC (2009) Applications of ultra-high-throughput sequencing. In: Belostotky DA (ed) Plant systems biology. Humana Press, New York, pp 79–108

    Chapter  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16(12):3599–3608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49(4):683–693

    Article  PubMed  CAS  Google Scholar 

  • Gocal GF, Sheldon CC, Gubler F et al (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127(4):1682–1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145(2):351–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437(7061):1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17(5):1376–1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackenberg M, Shi BJ, Gustafson P, Langridge P (2013) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13(1):214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing. FEBS Lett 579(26):5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  PubMed  CAS  Google Scholar 

  • Held MA, Penning B, Brandt AS, Kessans SA, Yong W, Scofield SR, Carpita NC (2008) Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci U S A 105(51):20534–20539

    Article  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13(9):2115–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinform 8(1):1

    Article  CAS  Google Scholar 

  • Iki T, Yoshikawa M, Nishikiori M et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39(2):282–291

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582(18):2679–2684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103(47):18002–18007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95(7):1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Kulcheski FR, de Oliveira LF, Molina LG et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12(1):307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101(34):12753–12758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2):206–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Rätsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105(25):8795–8800

    Article  PubMed  PubMed Central  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17):4311–4322

    Article  PubMed  CAS  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102(26):9412–9417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15(16):1501–1507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431(7006):364–370

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430(6998):471–476

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Jia L, Wang H, He Y (2011) HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. J Exp Bot 62:4367–4381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YX, Wang M, Wang XJ (2014) Endogenous small RNA clusters in plants. Genomics Proteom Bioinform 12(2):64–71

    Article  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12(12):2351–2365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv DK, Bai X, Li Y et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12(7):709–719

    Article  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Zhou K, Li F et al (2006) Structural basis for double-stranded RNA processing by dicer. Science 311(5758):195–198

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23(16):3356–3364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5):1360–1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151(4):859–870

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431(7006):338–342

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133(1):116–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A 106(52):22534–22539

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasaki H, Itoh JI, Hayashi K et al. Y(2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104(37):14867–14871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al. JD(2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  PubMed  CAS  Google Scholar 

  • Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95(25):14687–14692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24(23):2678–2692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5(1):e1000320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W et al (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132(3):1382–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18(19):2368–2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 109(31):12817–12821

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  PubMed  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16(5):457–465

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207

    Article  PubMed  CAS  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):487–491

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. Science 306(5698):997–997

    Article  PubMed  CAS  Google Scholar 

  • Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N (2012) Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. Planta 236(4):1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15(2):173–183

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Xu L, Wang Y et al (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) BMC Genomics 16(1):197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5):1397–1411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiebaut F, Rojas CA, Almeida KL et al (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35(3):502–512

    Article  PubMed  CAS  Google Scholar 

  • Tosic M, Roach A, de Rivaz JC, Dolivo M, Matthieu JM (1990) Post-transcriptional events are responsible for low expression of myelin basic protein in myelin deficient mice: role of natural antisense RNA. EMBO J 9(2):401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818

    Article  PubMed  CAS  Google Scholar 

  • Valiollahi E, Farsi M, Kakhki AM (2014) Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnol Rep 8(4):349–356

    Article  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10):1187–1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez F, Hohn T (2013) Biogenesis and biological activity of secondary siRNAs in plants. Scientifica 2013

    Google Scholar 

  • Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L (2009) Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 53(2):245

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8(3):135–142

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138(4):738–749

    Article  PubMed  CAS  Google Scholar 

  • Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werner S (2010) MicroRNA processing in Arabidopsis thaliana. Doctoral dissertation, Universität Tübingen

    Google Scholar 

  • Wirth S, Crespi M (2009) Non-protein coding RNAs, a diverse class of gene regulators, and their action in plants. RNA Biol 6(2):161–164

    Article  PubMed  CAS  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):e104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie M, Ren G, Zhang C, Yu B (2012) The DNA-and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. Plant J 72(3):491–500

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Zhu Q, Luo K, Zhou Q (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414(6861):317–322

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34(2):667–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105(29):10073–10078

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22(7):2322–2335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  PubMed  CAS  Google Scholar 

  • Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 109(44):18198–18203

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Gao S, Zhou X et al (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11(8):R81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xia J, Lii YE et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Zhu X, Chen et al (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14(1):271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9(4):1375–1391

    Article  CAS  Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3(1):103

    PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99

    Article  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu QH, Helliwell CA (2010) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. https://doi.org/10.1093/jxb/erq295

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, P. (2018). MicroRNA (miRNA) and Small Interfering RNA (siRNA): Biogenesis and Functions in Plants. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_12

Download citation

Publish with us

Policies and ethics