Skip to main content

MicroRNA and Its Application in Asthma Studies

  • Chapter
  • First Online:
  • 638 Accesses

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

Abstract

Asthma is a respiratory disease that is closely associated with genetic and environmental conditions, and miRNA is known as the key regulator of epigenetics. This is a kind of small non-coding RNA, which is involved in the translation process of proteins indirectly, controlling the behavior of the body. Recent studies have found that a large number of asthmatic patients have abnormal miRNA expression, and that miRNA has played a key role in asthma, including in regulating the immune function, airway inflammation, and airway remodeling. Therefore, this article reviews the application of microRNA in asthma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3′-UTR:

3′-untranslated region

AHR:

airway hyperresponsiveness

ASM:

airway smooth muscle

BD:

bronchodilator

BDNF:

brain-derived neurotrophic factor

BALF:

bronchoalveolar lavage fluid

BSM:

bronchial smooth muscle

DEP:

diesel exhaust particles

ELISA:

enzyme-linked immune sorbent assay

EOS:

eosinophilic

FEV1 :

forced expired volume in one second

FVC:

forced vital capacity

GCS:

glucocorticosteroid

GSK-3β:

glycogen synthase kinase-3β

HDM:

house dust mite

HLA-G:

Human Leucocyte Antigen G

IFN-γ:

interferon-γ

IRAK1:

IL-1 receptor associated kinase 1

KLF4:

Krüppel-like factor 4

LPS:

lipopolysaccharide

MAREs:

Maf recognize elements

miRNA:

microRNA

MyD88:

myeloid differentiation factor 88

NE:

neutrophilic

NFκβ:

nuclear factor kappa beta

OVA:

ovalbumin

PBMCs:

peripheral blood mononuclear cells

PCR:

polymerase Chain Reaction

PDCD4:

programmed cell death protein 4

PEF:

peak expiratory flow

PI3K:

phosphatidylinositol 3-hydroxy kinase

PM:

particulate matter

RISC:

RNA-induced silencing complex

RT-PCR:

reverse transcription-polymerase chain reaction

RUNX3:

runt-related transcription factor 3

SHH:

sonic hedgehog

SHIP1:

SH2-containing inositol 1

SOCS1:

suppressor of signaling cytokine1

SPP1:

secreted phosphoprotein 1

stRNA:

small tenporal RNA

T-Bet:

T-box expressed in T cells

TCR:

T cell antigen receptor

TLR4:

Toll-like receptor 4

TRAF6:

TNF receptor associated factor 6

TSLP:

Thymic stromal lymphopoietin

VEGF:

vascular endothelial growth factor

References

  1. Haussecker D, Kay MA. miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther. 2010;18:240–2. [PubMed:20125164]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73. [PubMed:24275495]

    Article  CAS  PubMed  Google Scholar 

  3. Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. [PubMed:18955434]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huo X, et al. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy. 2016;46:1281–90. [PubMed: 27192552]

    Article  CAS  PubMed  Google Scholar 

  5. Elbehidy RM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14. [PubMed: 26874829]

    Article  CAS  PubMed  Google Scholar 

  6. Li JJ, Tay HL, Maltby S, et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol. 2015;136:462–73. [PubMed: 25772595]

    Article  CAS  PubMed  Google Scholar 

  7. Wu XB, et al. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int J Clin Exp Med. 2014;7:1307–12. [PubMed: 24995087]

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Solberg OD, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med. 2012;186:965–74. [PubMed:22955319]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. [PubMed: 2744e8447]

    Article  CAS  PubMed  Google Scholar 

  10. Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4:e5889. [PubMed:19521514]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perry MM, Baker JE, Gibeon DS, et al. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol. 2014;50:7–17. [PubMed:23944957]

    PubMed  PubMed Central  Google Scholar 

  12. Haj-Salem I, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy. 2015;70:212–9. [PubMed:25443138]

    Article  CAS  PubMed  Google Scholar 

  13. Kho AT, et al. Circulating MicroRNAs: association with lung function in asthma. PLoS One. 2016;11:e0157998. [PubMed:27362794]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roff AN, Craig TJ, August A, et al. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol. 2014;3:68–83. [PubMed:25143867]

    PubMed  PubMed Central  Google Scholar 

  15. Levänen B, Bhakta NR, Paredes PT, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131:894–903. [PubMed:23333113]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Polikepahad S, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285:30139–49. [PubMed: 20630862]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar M, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011;128:1077–85. e1–10. [PubMed: 21616524]

    Article  CAS  PubMed  Google Scholar 

  18. Mattes J, et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106:18704–9. [PubMed: 19843690]

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sheedy FJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7. [PubMed: 19946272]

    Article  CAS  PubMed  Google Scholar 

  20. Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci. 2010;114:264–8. [PubMed: 20953121]

    Article  CAS  PubMed  Google Scholar 

  21. Collison A, et al. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128:160–7. e4. [PubMed: 21571357]

    Article  CAS  PubMed  Google Scholar 

  22. Takyar S, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013;210:1993–2010. [PubMed: 24043765]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jardim MJ, et al. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47:536–42. [PubMed: 22679274]

    Article  CAS  PubMed  Google Scholar 

  24. Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem. 2010;285:29336–47. [PubMed: 20525681]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pagdin T, Lavender P. MicroRNAs in lung diseases. Thorax. 2012;67:183–4. [PubMed: 21836155]

    Article  PubMed  Google Scholar 

  26. Radzikinas K, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci. 2011;31:15407–15. [PubMed: 22031887]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steiner DF, et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35:169–81. [PubMed: 21820330]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan L, Wang X, Fan L, et al. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res. 2016;42:417–24. [PubMed: 27902892]

    Article  CAS  PubMed  Google Scholar 

  29. Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015;125:2242–9. [PubMed: 26030228]

    Article  PubMed  PubMed Central  Google Scholar 

  30. Panganiban RPL, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1:154. [PubMed: 23885321]

    PubMed  PubMed Central  Google Scholar 

  31. Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012;113:459–64. [PubMed: 22700801]

    Article  CAS  PubMed  Google Scholar 

  32. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994. [PubMed:19342679]

    Article  CAS  PubMed  Google Scholar 

  33. Bleck B, Grunig G, Chiu A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190:3757. [PubMed: 23455502]

    Article  CAS  PubMed  Google Scholar 

  34. Panganiban RP, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137:1423–32. [PubMed:27025347]

    Article  CAS  PubMed  Google Scholar 

  35. Maes T, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016;137:1433–46. [PubMed:27155035]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Qian, YJ., Zhang, JY., Wang, F., Xia, TT. (2018). MicroRNA and Its Application in Asthma Studies. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_9

Download citation

Publish with us

Policies and ethics