Skip to main content

Protein and Post Translational Modification in Asthma

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 694 Accesses

Abstract

Asthma is a lung inflammation disease caused by a complex interaction between the immune system and environmental factors such as allergens. A lot of research is being done on discovering new proteins and post translational modification (PTM) associated with asthma pathogenesis. This chapter illustrates updated approaches in proteins and PTM detection and associating biomarkers of asthma. We focus on approaches such as Mass Spectrometry (MS), NMR, and microarray platforms. Concepts of protein and PTMs may provide new insights in searching potential clinical biomarkers in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laitinen L, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma 1–3. Am Rev Respir Dis. 1985;131:599–606. [Pubmed: 3994155]

    PubMed  CAS  Google Scholar 

  2. Lee J-Y, Park S-W, Chang HK, Kim HY, Rhim T, Lee J-H, et al. A disintegrin and metalloproteinase 33 protein in patients with asthma: relevance to airflow limitation. Am J Respir Crit Care Med. 2006;173(7):729–35. [Pubmed:16387804]

    Article  PubMed  CAS  Google Scholar 

  3. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004;22:789–815. [Pubmed:15032597]

    Article  PubMed  CAS  Google Scholar 

  4. O’Neil SE, Sitkauskiene B, Babusyte A, Krisiukeniene A, Stravinskaite-Bieksiene K, Sakalauskas R, et al. Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment. Respir Res. 2011;12:124. [Pubmed:21939520]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Park C-S, Rhim T. Application of proteomics in asthma research. Expert Rev Proteomics. 2011;8:221–30. [Pubmed:21501015]

    Article  PubMed  CAS  Google Scholar 

  6. Huang Y, Min S, Lui Y, Sun J, Su X, Liu Y, et al. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocyte-derived dendritic cells in different environments. Genes Immun. 2012;13:311–20. [Pubmed:22278394]

    Article  PubMed  CAS  Google Scholar 

  7. Cuddapah S, Barski A, Zhao K. Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol. 2010;22:341–7. [Pubmed:20226645]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol. 2014;15:777–88. [Pubmed:24997565]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, Barnes PJ, et al. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med. 2006;174:134–41. [Pubmed:16614347]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang Z, DiDonato JA, Buffa J, Comhair SA, Aronica MA, Dweik RA, et al. Eosinophil peroxidase catalyzed protein carbamylation participates in asthma. J Biol Chem. 2016;291:22118–35. [Pubmed:27587397]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Agache I, Akdis CA. Endotypes of allergic diseases and asthma: an important step in building blocks for the future of precision medicine. Allergol Int. 2016;65:243–52. [Pubmed:27282212]

    Article  PubMed  CAS  Google Scholar 

  12. Toda M, Ono SJ. Genomics and proteomics of allergic disease. Immunology. 2002;106:1–10. [Pubmed:11972626]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baskin Y, Yigitbasi T. Clinical proteomics of breast cancer. Curr Genomics. 2010;11:528–36. [Pubmed:21532837]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ahn SM, Simpson RJ. Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin Appl. 2007;1:1004–15. [Pubmed:21136753]

    Article  PubMed  CAS  Google Scholar 

  15. Plymoth A, Löfdahl CG, Ekberg-Jansson A, Dahlbäck M, Lindberg H, Fehniger TE, et al. Human bronchoalveolar lavage: biofluid analysis with special emphasis on sample preparation. Proteomics. 2003;3:962–72. [Pubmed:12833521]

    Article  PubMed  CAS  Google Scholar 

  16. Lindahl M, Ståhlbom B, Tagesson C. Newly identified proteins in human nasal and bronchoalveolar lavage fluids: potential biomedical and clinical applications. Electrophoresis. 1999;20:3670–6. [Pubmed:10612294]

    Article  PubMed  CAS  Google Scholar 

  17. Kim TH, Lee YH, Kim KH, Lee SH, Cha JY, Shin EK, et al. Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis: antiinflammatory and antifibrotic effect on experimental lung injury and fibrosis. Am J Respir Crit Care Med. 2010;182:633–42. [Pubmed:20463180]

    Article  PubMed  CAS  Google Scholar 

  18. Murphy VE, Johnson RF, Wang Y-C, Akinsanya K, Gibson PG, Smith R, et al. The effect of maternal asthma on placental and cord blood protein profiles. J Soc Gynecol Investig. 2005;12:349–55. [Pubmed:15979547]

    Article  PubMed  CAS  Google Scholar 

  19. Lee S-H, Rhim T, Choi Y-S, Min J-W, Kim S-H, Cho S-Y, et al. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am J Respir Crit Care Med. 2006;173:370–8. [Pubmed:16293803]

    Article  PubMed  CAS  Google Scholar 

  20. Samter M, Beers RF. Concerning the nature of intolerance to aspirin. J Allergy. 1967;40:281–93. [Pubmed:5235203]

    Article  PubMed  CAS  Google Scholar 

  21. Szczeklik A, Gryglewski R, Czerniawska-Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin-sensitive patients. Br Med J. 1975;1:67–9. [Pubmed:1109660]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest. 1998;101:834–46. [Pubmed:9466979]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rhim T, Choi YS, Nam BY, Uh S, Park J, Kim YH, et al. Plasma protein profiles in early asthmatic responses to inhalation allergen challenge. Allergy. 2009;64:47–54. [Pubmed:19076930]

    Article  PubMed  CAS  Google Scholar 

  24. Houtman R, Krijgsveld J, Kool M, Romijn EP, Redegeld FA, Nijkamp FP, et al. Lung proteome alterations in a mouse model for nonallergic asthma. Proteomics. 2003;3:2008–18. [Pubmed:14625863]

    Article  PubMed  CAS  Google Scholar 

  25. Jeong H, Rhim T, Ahn M-H, Yoon P-O, Kim S-H, Chung IY, et al. Proteomic analysis of differently expressed proteins in a mouse model for allergic asthma. J Korean Med Sci. 2005;20:579–85. [Pubmed:16100449]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao J, Zhu H, Wong CH, Leung KY, Wong W. Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach. Proteomics. 2005;5:2799–807. [Pubmed:15996009]

    Article  PubMed  CAS  Google Scholar 

  27. Calvo FQ, Fillet M, De Seny D, Meuwis MA, Marée R, Crahay C, et al. Biomarker discovery in asthma-related inflammation and remodeling. Proteomics. 2009;9:2163–70. [Pubmed:19322781]

    Article  PubMed  CAS  Google Scholar 

  28. Roh GS, Shin Y, Seo SW, Yoon BR, Yeo S, Park SJ, et al. Proteome analysis of differential protein expression in allergen-induced asthmatic mice lung after dexamethasone treatment. Proteomics. 2004;4:3318–27. [Pubmed:15378748]

    Article  PubMed  CAS  Google Scholar 

  29. Liu H, Zhou L-F, Zhang Q, Qian F-H, Yin K-S, Huang M, et al. Increased RhoGDI~ 2 and peroxiredoxin 5 levels in asthmatic murine model of beta~ 2-adrenoceptor desensitization: a proteomics approach. Chin Med J. 2008;121:355–62. [Pubmed:18304470]

    PubMed  CAS  Google Scholar 

  30. Zhu Z, Zheng T, Homer RJ, Kim Y-K, Chen NY, Cohn L, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–82. [Pubmed:15192232]

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Y, Dong Q, Louahed J, Dragwa C, Savio D, Huang M, et al. Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol. 2001;25:486–91. [Pubmed:11694454]

    Article  PubMed  CAS  Google Scholar 

  32. Michel O, Doyen V, Leroy B, Bopp B, Dinh DHP, Corazza F, et al. Expression of calgranulin A/B heterodimer after acute inhalation of endotoxin: proteomic approach and validation. BMC Pulm Med. 2013;13:65–72. [Pubmed:24237763]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003;111:1863–74. [Pubmed:16100447]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shi O, Morris SM, Zoghbi H, Porter CW, O’Brien WE. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol Cell Biol. 2001;21:811–3. [Pubmed:11154268]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Barnes FA, Bingle L, Bingle CD. Pulmonary genomics, proteomics, and PLUNCs. Am J Respir Cell Mol Biol. 2008;38:377–9. [Pubmed:17975173]

    Article  PubMed  CAS  Google Scholar 

  36. Ghafouri B, Irander K, Lindbom J, Tagesson C, Lindahl M. Comparative proteomics of nasal fluid in seasonal allergic rhinitis. J Proteome Res. 2006;5:330–8. [Pubmed:16457599]

    Article  PubMed  CAS  Google Scholar 

  37. Wu J, Kobayashi M, Sousa EA, Liu W, Cai J, Goldman SJ, et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics. 2005;4:1251–64. [Pubmed:15951573]

    Article  PubMed  CAS  Google Scholar 

  38. North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296:L911–L20. [Pubmed:19286931]

    Article  PubMed  CAS  Google Scholar 

  39. Greenlee KJ, Corry DB, Engler DA, Matsunami RK, Tessier P, Cook RG, et al. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol. 2006;177:7312–21. [Pubmed:17082650]

    Article  PubMed  CAS  Google Scholar 

  40. Louten J, Mattson JD, Malinao M-C, Li Y, Emson C, Vega F, et al. Biomarkers of disease and treatment in murine and cynomolgus models of chronic asthma. Biomark Insights. 2012;7:87–104. [Pubmed:22837640]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lee T-H, Jang A-S, Park J-S, Kim T-H, Choi YS, Shin H-R, et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol. 2013;111:268–75. [Pubmed:24054362]

    Article  PubMed  CAS  Google Scholar 

  42. Yan X, Chu J-H, Gomez J, Koenigs M, Holm C, He X, et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191:1116–25. [Pubmed:25763605]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Candiano G, Bruschi M, Pedemonte N, Caci E, Liberatori S, Bini L, et al. Gelsolin secretion in interleukin-4–treated bronchial epithelia and in asthmatic airways. Am J Respir Crit Care Med. 2005;172:1090–6. [Pubmed:16100010]

    Article  PubMed  Google Scholar 

  44. Larsen K, Macleod D, Nihlberg K, Gürcan E, Bjermer L, Marko-Varga G, et al. Specific haptoglobin expression in bronchoalveolar lavage during differentiation of circulating fibroblast progenitor cells in mild asthma. J Proteome Res. 2006;5:1479–83. [Pubmed:16739999]

    Article  PubMed  CAS  Google Scholar 

  45. Jeong HC, Lee SY, Lee EJ, Jung KH, Kang EH, Lee SY, et al. Proteomic analysis of peripheral T-lymphocytes in patients with asthma. Chest. 2007;132:489–96. [Pubmed:17550934]

    Article  PubMed  Google Scholar 

  46. Gray RD, MacGregor G, Noble D, Imrie M, Dewar M, Boyd AC, et al. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med. 2008;178:444–52. [Pubmed:18565957]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hur G-Y, Choi G-S, Sheen S-S, Lee H-Y, Park H-J, Choi S-J, et al. Serum ferritin and transferrin levels as serologic markers of methylene diphenyl diisocyanate–induced occupational asthma. J Allergy Clin Immunol. 2008;122:774–80. [Pubmed:191014769]

    Article  PubMed  CAS  Google Scholar 

  48. Gomes-Alves P, Imrie M, Gray RD, Nogueira P, Ciordia S, Pacheco P, et al. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Clin Biochem. 2010;43:168–77. [Pubmed:19850022]

    Article  PubMed  CAS  Google Scholar 

  49. Gharib SA, Nguyen EV, Lai Y, Plampin JD, Goodlett DR, Hallstrand TS. Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol. 2011;128:1176–84. [Pubmed:21906793]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Verrills NM, Irwin JA, Yan He X, Wood LG, Powell H, Simpson JL, et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1633–43. [Pubmed:21471098]

    Article  PubMed  CAS  Google Scholar 

  51. Haenen S, Clynen E, Nemery B, Hoet PH, Vanoirbeek JA. Biomarker discovery in asthma and COPD: application of proteomics techniques in human and mice. EuPA Open Proteom. 2014;4:101–12. https://doi.org/10.1016/j.euprot.2014.04.008

    Article  CAS  Google Scholar 

  52. Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691–9. [Pubmed:22312457]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Eng. 2005;44:7342–72. [Pubmed:16267872]

    Article  CAS  Google Scholar 

  54. Theillet F-X, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon M-K, et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR. 2012;54:217–36. [Pubmed:23011410]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chou T-Y, Hart GW. O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. The molecular immunology of complex carbohydrates—2. Adv Exp Med Biol. 2001;491:413–8. [Pubmed:14533811]

    Article  PubMed  CAS  Google Scholar 

  56. Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974;71:2730–3. [Pubmed:4528109]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nesvizhskii AI. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol. 2007;367:87–119. [Pubmed:17185772]

    PubMed  CAS  Google Scholar 

  58. Kuhn E, Addona T, Keshishian H, Burgess M, Mani D, Lee RT, et al. Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem. 2009;55:1108–17. [Pubmed:19372185]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Villén J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc. 2008;3:1630–8. [Pubmed:18833199]

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Færgeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4:310–27. [Pubmed:15665377]

    Article  PubMed  CAS  Google Scholar 

  61. Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012;43:1025–47. [Pubmed:22002794]

    Article  PubMed  CAS  Google Scholar 

  62. Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques. 2006;40:790–8. [Pubmed:16774123]

    Article  PubMed  CAS  Google Scholar 

  63. Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. 2009;8:2144–56. [Pubmed:19222236]

    Article  PubMed  CAS  Google Scholar 

  64. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. [Pubmed:12634793]

    Article  PubMed  CAS  Google Scholar 

  65. Cai W, Tucholski TM, Gregorich ZR, Ge Y. Top-down proteomics: technology advancements and applications to heart diseases. Expert Rev Proteomics. 2016;13:717–30. [Pubmed:27448560]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Amunugama R, Jones R, Ford M, Allen D. Bottom-up mass spectrometry–based proteomics as an investigative analytical tool for discovery and quantification of proteins in biological samples. Adv Wound Care. 2013;2:549–57. [Pubmed:24761338]

    Article  Google Scholar 

  67. Zannetos S, Zachariadou T, Zachariades A, Georgiou A, Talias MA. The economic burden of adult asthma in Cyprus; a prevalence-based cost of illness study. BMC Public Health. 2017;17:262–71. [Pubmed:28302094]

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giron P, Dayon L, Sanchez JC. Cysteine tagging for MS-based proteomics. Mass Spectrom Rev. 2011;30:366–95. [Pubmed:21500242]

    Article  PubMed  CAS  Google Scholar 

  69. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86. [Pubmed:12118079]

    Article  PubMed  CAS  Google Scholar 

  70. Farley AR, Link AJ. Identification and quantification of protein posttranslational modifications. Methods Enzymol. 2009;463:725–63. [Pubmed:19892200]

    Article  PubMed  CAS  Google Scholar 

  71. McLafferty FW, Horn DM, Breuker K, Ge Y, Lewis MA, Cerda B, et al. Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom. 2001;12:245–9. [Pubmed:11281599]

    Article  PubMed  CAS  Google Scholar 

  72. Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005;402:148–85. [Pubmed:16401509]

    Article  PubMed  CAS  Google Scholar 

  73. Han J, Borchers CH. Top-down analysis of recombinant histone H3 and its methylated analogs by ESI/FT-ICR mass spectrometry. Proteomics. 2010;10(20):3621–30. [Pubmed:20486121]

    Article  PubMed  CAS  Google Scholar 

  74. Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445:683–93. [Pubmed:24556311]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Halim A, Carlsson MC, Madsen CB, Brand S, Moller SR, Olsen CE, et al. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications. Mol Cell Proteomics. 2015;14:191–204. [Pubmed:25389185]

    Article  PubMed  CAS  Google Scholar 

  76. Safaei A, Rezaei-Tavirani M, Oskouie AA, Mohebbi SR, Shabani M, Sharifian A. Serum metabolic profiling of advanced cirrhosis based on HCV. Hepat Mon. 2017;17:e44431.

    Article  CAS  Google Scholar 

  77. Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Ed Eng. 2015;127:7202–6. [Pubmed:25924827]

    Article  Google Scholar 

  78. Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8:904–16. [Pubmed:17878917]

    Article  PubMed  CAS  Google Scholar 

  79. Thomas MA, Buelow BJ, Nevins AM, Jones SE, Peterson FC, Gundry RL, et al. Structure-function analysis of CCL28 in the development of post-viral asthma. J Biol Chem. 2015;290:4528–36. [Pubmed:25556652]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods. 2004;290:121–33. [Pubmed:15261576]

    Article  PubMed  CAS  Google Scholar 

  81. Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res. 2011;28:1480–99. [Pubmed:21116694]

    Article  PubMed  CAS  Google Scholar 

  82. Merbl Y, Kirschner MW. Protein microarrays for genome-wide posttranslational modification analysis. Wiley Interdiscip Rev Syst Biol Med. 2011;3:347–56. [Pubmed:20865779]

    Article  PubMed  CAS  Google Scholar 

  83. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003;111:1863–74. [Pubmed:12813022]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim H-B, Kim C-K, Iijima K, Kobayashi T, Kita H. Protein microarray analysis in patients with asthma: elevation of the chemokine PARC/CCL18 in sputum. Chest. 2009;135:295–302. [Pubmed:19017877]

    Article  PubMed  CAS  Google Scholar 

  85. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A. 2007;104:15858–63. [Pubmed:17898169]

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, et al. Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol. 2001;25:474–85. [Pubmed:11694453]

    Article  PubMed  CAS  Google Scholar 

  87. Yuyama N, Davies DE, Akaiwa M, Matsui K, Hamasaki Y, Suminami Y, et al. Analysis of novel disease-related genes in bronchial asthma. Cytokine. 2002;19:287–96. [Pubmed:12421571]

    Article  PubMed  CAS  Google Scholar 

  88. Wang S-W, Oh CK, Cho SH, Hu G, Martin R, Demissie-Sanders S, et al. Amphiregulin expression in human mast cells and its effect on the primary human lung fibroblasts. J Allergy Clin Immunol. 2005;115:287–94. [Pubmed:15966083]

    Article  PubMed  CAS  Google Scholar 

  89. Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M, Cuomo PJ, et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol. 2000;1:221–6. [Pubmed:10973279]

    Article  PubMed  CAS  Google Scholar 

  90. Zou J, Young S, Zhu F, Gheyas F, Skeans S, Wan Y, et al. Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol. 2002;3(5):research0020. [Pubmed:12049661]

    Article  PubMed  PubMed Central  Google Scholar 

  91. Izuhara K, Saito H. Microarray-based identification of novel biomarkers in asthma. Allergol Int. 2006;55:361–7. [Pubmed:17130677]

    Article  PubMed  CAS  Google Scholar 

  92. Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol. 2006;118:98–104. [Pubmed:16815144]

    Article  PubMed  CAS  Google Scholar 

  93. Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13. [Pubmed:14735121]

    Article  PubMed  CAS  Google Scholar 

  94. Peyvandi AA, Khoshsirat S, Safaei A, Rezaei-Tavirani M, Azodi-Zamanian M. Interactome analysis of 11-dehydrosinulariolide-treated oral carcinoma cell lines such as Ca9-22 and CAL-27 and melanoma cell line. Inter J Cancer Manag. 2017;10:e10096. http://ijcancerprevention.com/en/articles/10096.html

  95. Safaei A, Tavirani MR, Azodi MZ, Lashay A, Mohammadi SF, Broumand MG, et al. Diabetic retinopathy and laser therapy in rats: a protein-protein interaction network analysis. J Lasers Med Sci. 2017;8:S20–1. [Pubmed:29071030]

    Article  PubMed  PubMed Central  Google Scholar 

  96. Abbaszadeh H-A, Peyvandi AA, Sadeghi Y, Safaei A, Zamanian-Azodi M, Khoramgah MS, et al. Er: YAG laser and cyclosporin A effect on cell cycle regulation of human gingival fibroblast cells. J Lasers Med Sci. 2017;8(3):143–9. [Pubmed:29123635]

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ardakani MJE, Safaei A, Oskouie AA, Haghparast H, Haghazali M, Shalmani HM, et al. Evaluation of liver cirrhosis and hepatocellular carcinoma using Protein-Protein Interaction Networks. Gastroenterol Hepatol Bed Bench. 2016;9:S14–22. [Pubmed:28224023]

    Google Scholar 

  98. Safaei A, Tavirani MR, Oskouei AA, Azodi MZ, Mohebbi SR, Nikzamir AR. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016;9(2):114–23. [Pubmed:27099671]

    PubMed  PubMed Central  Google Scholar 

  99. Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46. [Pubmed:17638813]

    Article  PubMed  CAS  Google Scholar 

  100. Shoemaker BA, Panchenko AR, Bryant SH. Finding biologically relevant protein domain interactions: conserved binding mode analysis. Protein Sci. 2006;15:352–61. [Pubmed:16385001]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med. 2013;5:37. [Pubmed:23635424]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chen Y, Qiao J. Protein–protein interaction network analysis and identifying regulation microRNAs in asthmatic children. Allergol Immunopathol. 2015;43:584–92. [Pubmed:25979194]

    Article  CAS  Google Scholar 

  103. Xu W. Expression data analysis to identify biomarkers associated with asthma in children. Int J Genomics. 2014;2014:165175. [Pubmed:24790987]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Smith LD, Leatherbarrow RJ, Spivey AC. Development of small molecules to target the IgE: FcεRI protein–protein interaction in allergies. Future Med Chem. 2013;5:1423–35. [Pubmed:23919552]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Arefi Oskouie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safaei, A., Oskouie, A.A. (2018). Protein and Post Translational Modification in Asthma. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_6

Download citation

Publish with us

Policies and ethics