Skip to main content

Asthma Precision

  • Chapter
  • First Online:
Genomic Approach to Asthma

Part of the book series: Translational Bioinformatics ((TRBIO,volume 12))

  • 653 Accesses

Abstract

Asthma is a complex and heterogeneous disease, as the reaction to recommended treatmens varies with each individual, especially for refractory and severe asthma. Cluster analysis has helped us to distinguish the different features of asthma phenotype according to asthma patient population, clinical symptoms and pathophysiological changes, and due to advances of omics sequencing in genomics and proteomics, we can detect asthma biomarkers derived from multiple specimens, accurately and quickly finding the pathogenesis of asthma. These progresses have promoted the personalized therapy of asthma. Many targeted drugs aiming to small molecules that had changed in the process of asthma have already obtained the initial efficacy in clinical trials. In addition, the safety and effectiveness of bronchial thermoplasty have also been affirmed. This article mainly focuses on these selected therapeutic targets therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAAAI:

The American Academy of Allergy, Asthma and Immunology

ACQ:

asthma control questionnaire

ADCC:

antibody-dependent cell-mediated cytotoxicity

AEC:

absolute eosinophil count

AHR:

airway hyperreactivity

AQLQ:

asthma quality of life questionnaire

ASM:

airway smooth muscle

BD:

bronchodilator

BHR:

bronchial hyperresponsiveness

BMI:

body mass index

COPD:

chronic obstructive pulmonary disease

CPAP:

continuous positive airway pressure

CRP:

C-reactive protein

CRTH:

chemoattractant receptor–homologous

CXCR2:

C-X-C chemokine receptor type2

ED:

emergency department

FDA:

Food and Drug Administration

FeNO:

fractional exhaled nitric oxide

FEV1:

forced expired volume in 1 s

GINA:

Global Initiative for Asthma

HR:

hazard ratio

ICS/CS:

inhaled corticosteroids/ corticosteroids

IL-13:

interleukin 13

Il-17:

interleukin 17

IL-4:

interleukin 4

Il-5:

interleukin 5

ILC2:

group 2 innate lymphoid cells

LABA:

long-acting β-agonists

MCh:

methacholine

OCS:

oral corticosteroids

PEF:

peak expiratory flow

PGD2:

prostaglandin D2

PM:

precision medicine

QALY:

quality-adjusted life year

RCT:

randomized controlled trial

TNF-α:

tumor necrosis factor-α

Reference

  1. Bousquet J, Mantzouranis E, Cruz AA, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER, et al. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126:926–38. [PubMed:20926125]

    Article  PubMed  Google Scholar 

  2. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178:218–24. [PubMed:18480428]

    Article  PubMed  Google Scholar 

  3. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181:315–23. [PubMed:19892860]

    Article  PubMed  Google Scholar 

  4. Dixon AE, Poynter ME. Mechanisms of asthma in obesity: pleiotropic aspects of obesity produce distinct asthma phenotypes. Am J Respir Cell Mol Biol. 2016;54:601–8. [PubMed:26886277]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wood LG, Garg ML, Gibson PG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol. 2011;127:1133–40. [PubMed:21377715]

    Article  PubMed  Google Scholar 

  6. Karakaya G, Celebioglu E, Kalyoncu AF. Non-steroidal anti-inflammatory drug hypersensitivity in adults and the factors associated with asthma. Respir Med. 2013;107:967–74. [PubMed:23643317]

    Article  PubMed  Google Scholar 

  7. Sofianou A, Martynenko M, Wolf MS, et al. Asthma beliefs are associated with medication adherence in older asthmatics. J Gen Intern Med. 2013;28:67–73. [PubMed:22878848]

    Article  PubMed  Google Scholar 

  8. Krieger JW, Takaro TK, Song L, et al. The Seattle-King County Healthy Homes Project: a randomized, controlled trial of a community health worker intervention to decrease exposure to indoor asthma triggers. Am J Public Health. 2005;95:652–9. [PubMed:15798126]

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diaz J, Farzan S. Clinical implications of the obese–asthma phenotypes. Immunol Allergy Clin N Am. 2014;34:739–51. [PubMed:25282287]

    Article  Google Scholar 

  10. Hellings PW, Fokkens WJ, Bachert C, et al. Positioning the principles of precision medicine in care pathways for allergic rhinitis and chronic rhinosinusitis – an EUFOREA-ARIA-EPOS-AIRWAYS ICP statement. Allergy. 2017;72:1297–305. [PubMed:28306159]

    Article  PubMed  CAS  Google Scholar 

  11. Gibson PG, Peters MJ, Wainwright CE. Targeted therapy for chronic respiratory disease: a new paradigm. Med J Aust. 2017;206:136–40. [PubMed:28208047]

    Article  PubMed  Google Scholar 

  12. Ferrando M, Bagnasco D, Varricchi G, et al. Personalized medicine in allergy. Allergy, Asthma Immunol Res. 2017;9:15–24. [PubMed:27826958]

    Article  CAS  Google Scholar 

  13. Guilleminault L, Ouksel H, Belleguic C, et al. Personalised medicine in asthma: from curative to preventive medicine. Eur Respir Rev. 2017;26(143):160010. [PubMed:28049214]

    Article  PubMed  Google Scholar 

  14. Djukanovic R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004;170:583–93. [PubMed:15172898]

    Article  PubMed  Google Scholar 

  15. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115:459–65. [PubMed:15753888]

    Article  PubMed  CAS  Google Scholar 

  16. Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA, et al. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol. 2004;113:297–302. [PubMed:14767445]

    Article  PubMed  CAS  Google Scholar 

  17. Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–73. [PubMed:24337046]

    Article  PubMed  CAS  Google Scholar 

  18. Humbert M, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60:309–16. [PubMed:15679715]

    Article  PubMed  CAS  Google Scholar 

  19. Normansell R, Walker S, Milan SJ, et al. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;1:CD003559. [PubMed:24414989]

    Google Scholar 

  20. Chen H, Eisner MD, Haselkorn T, Trzaskoma B. Concomitant asthma medications in moderate-to-severe allergic asthma treated with omalizumab. Respir Med. 2013;107:60–7. [PubMed:23083840]

    Article  PubMed  Google Scholar 

  21. Braunstahl GJ, Chlumsky J, Peachey G, Chen CW. Reduction inoral corticosteroid use in patients receiving omalizumab for allergicasthma in the real-world setting. Allergy Asthma Clin Immunol. 2013;9:47. [PubMed: 24305549]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hanania NA, Alpan O, Hamilos DL, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154:573–82. [PubMed: 21536936]

    Article  PubMed  Google Scholar 

  23. Hanania NA, Wenzel S, Rosén K, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187:804–11. [PubMed: 23471469]

    Article  PubMed  CAS  Google Scholar 

  24. Long A, Rahmaoui A, Rothman KJ, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134:560–7. [PubMed: 24679845]

    Article  PubMed  CAS  Google Scholar 

  25. Lai T, Wang S, Xu Z, et al. Long-term efficacy and safety of omalizumab in patients with persistent uncontrolled allergic asthma: a systematic review and meta-analysis. Sci Rep. 2015;5:8191. [PubMed:25645133]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nopp A, Johansson SG, Adédoyin J, et al. After 6 years with Xolair; a 3-year withdrawal follow-up. Allergy. 2010;65:56–60. [PubMed:19796193]

    Article  PubMed  CAS  Google Scholar 

  27. Gauvreau GM, Arm JP, Boulet LP, Leigh R, Cockcroft DW, DAvis BE, et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol. 2016;138:1051–9. [PubMed:27185571]

    Article  PubMed  CAS  Google Scholar 

  28. Kanda A, Driss V, Hornez N, Abdallah M, Roumier T, Abboud G, et al. Eosinophil-derived IFN-gamma induces airway hyperresponsiveness and lung inflammation in the absence of lymphocytes. J Allergy Clin Immunol. 2009; 124(3):573–82, 82.e1-9. [PubMed:19539982]

    Google Scholar 

  29. Wang FP, Liu T, Lan Z, et al. Efficacy and safety of anti-interleukin-5Therapy in patients with asthma: a systematic review and meta-analysis. PLoS One. 2016;11:e0166833. [PubMed:27875559]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nair P, Pizzichini M, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360:985–93. [PubMed:19264687]

    Article  PubMed  CAS  Google Scholar 

  31. Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84. [PubMed:19264686]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Prazma CM, Wenzel S, Barnes N, Douglass JA, Hartley BF, Ortega H. Characterisation of an OCS-dependent severe asthma population treated with mepolizumab. Thorax. 2014;69:1141–2. [PubMed:28434924]

    Article  PubMed  CAS  Google Scholar 

  33. Pavord I, Kom S, Bleecker E, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9. [PubMed:22901886]

    Article  PubMed  CAS  Google Scholar 

  34. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371:1189–97. [PubMed:25199060]

    Article  PubMed  CAS  Google Scholar 

  35. Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371:1198–207. [PubMed:25199059]

    Article  PubMed  CAS  Google Scholar 

  36. Lugogo N, Domingo C, Chanez P, et al. Long-term efficacy and safety of mepolizumab in patients with severe eosinophilic asthma: a multicenter, open-label, phase IIIb study. Clin Ther. 2016;38:2058–70. [PubMed:27553751]

    Article  PubMed  CAS  Google Scholar 

  37. Kolbeck R, Kozhich A, Koike M, et al. MEDI-563, a humanizedanti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol. 2010;125:1344–1353.e2. [PubMed:20513525]

    Article  PubMed  CAS  Google Scholar 

  38. Pham TH, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med. 2016;111:21–9. [PubMed:26775606]

    Article  PubMed  Google Scholar 

  39. Laviolette M, Gossage DL, Gauvreau G, et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132:1086–96. e5. [PubMed:23866823]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Castro M, Wenzel SE, Bleecker ER, et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med. 2014;2:879–90. [PubMed:25306557]

    Article  PubMed  CAS  Google Scholar 

  41. Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosageinhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388:2115–27. [PubMed:27609408]

    Article  PubMed  CAS  Google Scholar 

  42. FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an antiinterleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388:2128–41. [PubMed:27609406]

    Article  PubMed  CAS  Google Scholar 

  43. Ferguson GT, FitzGerald JM, Bleecker ER, et al. Benralizumab for patients with mild to moderate, persistent asthma (BISE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. Respir Med. 2017;5:568–76. [PubMed:28545978]

    CAS  Google Scholar 

  44. Castro M, Mathur S, Hargreave P, et al. Reslizumab for poorly controlled eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184:1125–32. [PubMed:21852542]

    Article  PubMed  CAS  Google Scholar 

  45. Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated bloodeosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3trials. Lancet Respir Med. 2015;3:e15. [PubMed:25890659]

    Article  PubMed  CAS  Google Scholar 

  46. Maselli DJ, Velez MI, Rogers L. Reslizumab in the management of poorly controlled asthma: the data so far. J Asthma Allergy. 2016;9:155–62. [PubMed:27621657]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Perkins C, Wills-Karp M, Finkelman FD. IL-4 induces IL-13-independent allergic airway inflammation. J Allergy Clin Immunol. 2006;118:410–9. [PubMed:16890766]

    Article  PubMed  CAS  Google Scholar 

  48. Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R, et al. Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol. 2008;121(3):685–91. [PubMed:18328894]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368:2455–66. [PubMed:23688323]

    Article  PubMed  CAS  Google Scholar 

  50. Beck LA, Thaçi D, Hamilton JD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371:130–9. [PubMed:25006719]

    Article  PubMed  CAS  Google Scholar 

  51. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med. 2010;181:788–96. [PubMed:20056900]

    Article  PubMed  CAS  Google Scholar 

  52. Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365:1088–98. [PubMed:21812663]

    Article  PubMed  CAS  Google Scholar 

  53. Hanania NA, Korenblat P, Chapman KR, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II):replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med. 2016;4:781–96. [PubMed:27616196]

    Article  PubMed  CAS  Google Scholar 

  54. Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax. 2015;70:748–56. [PubMed:26001563]

    Article  PubMed  Google Scholar 

  55. Piper E, Brightling C, Niven R, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41:330–8. [PubMed:22743678]

    Article  PubMed  CAS  Google Scholar 

  56. Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3:692–701. [PubMed:26231288]

    Article  PubMed  CAS  Google Scholar 

  57. De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ, et al. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol. 2014;133:989–96. [PubMed:24582316]

    Article  PubMed  CAS  Google Scholar 

  58. Dias-Júnior SA, Reis M, de Carvalho-Pinto RM, et al. Effects of weight loss on asthma control in obese patients with severe asthma. Eur Respir J. 2014;43:1368–77. [PubMed:24232701]

    Article  PubMed  CAS  Google Scholar 

  59. Jensen ME, Gibson PG, Collins CE, et al. Diet-induced weight loss in obese children with asthma: a randomized controlled trial. Clin Exp Allergy. 2013;43:775–84. [PubMed:23786284]

    Article  PubMed  CAS  Google Scholar 

  60. Luna-Pech JA, Torres-Mendoza BM, Luna-Pech JA, et al. Normocaloric diet improves asthma-related quality of life in obese pubertal adolescents. Int Arch Allergy Immunol. 2014;163:252–8. [PubMed:24713632]

    Article  PubMed  Google Scholar 

  61. Scott HA, Gibson PG, Garg ML, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy. 2013;43:36–49. [PubMed:23278879]

    Article  PubMed  CAS  Google Scholar 

  62. Reddy RC, Baptist AP, Fan Z, et al. The effects of bariatric surgery on asthma severity. Obes Surg. 2011;21:200–6. [PubMed:20393807]

    Article  PubMed  Google Scholar 

  63. Boulet LP, Turcotte H, Martin J, et al. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106:651–60. [PubMed:22326605]

    Article  PubMed  Google Scholar 

  64. Desai LP, Wu Y, Tepper RS, et al. Mechanical stimuli and IL-13 interact at integrin adhesion complexes to regulate expression of smooth muscle myosin heavy chain in airway smooth muscle tissue. Am J Physiol Lung Cell Mol Physiol. 2011;301:L275–84. [PubMed:21642449]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Busk M, Busk N, Puntenney P, et al. Use of continuous positive airway pressure reduces airway reactivity in adults with asthma. Eur Respir J. 2012;41:317–22. [PubMed:22835615]

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo controlled trial. Lancet. 2012;380:660–7. [PubMed:22901887]

    Article  PubMed  CAS  Google Scholar 

  67. Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ, et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013;309(12):1251–9. [PubMed:23532241]

    Article  PubMed  CAS  Google Scholar 

  68. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98. [PubMed:21864166]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma(AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68:322–9. [PubMed:23291349]

    Article  PubMed  Google Scholar 

  70. Good Jr JT, Rollins DR, Martin RJ. Macrolides in the treatment of asthma. Curr Opin Pulm Med. 2012;18:76–84. [PubMed:22112996]

    Article  CAS  Google Scholar 

  71. Hahn DL, Grasmick M, Hetzel S, Yale S. Azithromycin for bronchial asthma in adults: an effectiveness trial. J Am Board Fam Med. 2012;25:442–59. [PubMed:22773713]

    Article  PubMed  Google Scholar 

  72. Licona-Limón P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14:536–42. [PubMed:23685824]

    Article  PubMed  CAS  Google Scholar 

  73. Nair P, Gaga M, Zervas E, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42:1097–103. [PubMed:22702508]

    Article  PubMed  CAS  Google Scholar 

  74. Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188:1294–302. [PubMed:24200404]

    Article  PubMed  CAS  Google Scholar 

  75. Tillie-Leblond I, Germaud P, Leroyer C. Allergic bronchopulmonary aspergillosis and omalizumab. Allergy. 2011;66:1254–6. [PubMed:21517902]

    Article  PubMed  CAS  Google Scholar 

  76. Chishimba L, Niven RM, Cooley J, et al. Voriconazole and posaconazole improve asthma severity in allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitization. J Asthma. 2012;49:423–33. [PubMed:22380765]

    Article  PubMed  CAS  Google Scholar 

  77. Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M, Lewis T, et al. Arandomized, double-blind, placebo-controlled study of the CRTH2antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy. 2012;42:38–48. [PubMed:21762224]

    Article  PubMed  CAS  Google Scholar 

  78. Pettipher R, Hunter MG, Perkins CM, Collins LP, Lewis T, Baillet M, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69:1223–32. [PubMed:24866478]

    Article  PubMed  CAS  Google Scholar 

  79. Hall IP, Fowler AV, Gupta A, Tetzlaff K, Nivens MC, Sarno M, et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther. 2015;32:37–44. [PubMed:25861737]

    Article  PubMed  CAS  Google Scholar 

  80. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlén SE, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179:549–58. [PubMed:19136369]

    Article  PubMed  CAS  Google Scholar 

  81. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354:697–708. [PubMed:16481637]

    Article  PubMed  CAS  Google Scholar 

  82. Morjaria JB, Chauhan AJ, Babu KS, Polosa R, Davies DE, Holgate ST. The role of a soluble TNFalpha receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial. Thorax. 2008;63:584–91. [PubMed:18245148]

    Article  PubMed  CAS  Google Scholar 

  83. Mullarkey MF, Lammert JK, Blumenstein BA. Long-term methotrexate treatment incorticosteroid-dependent asthma. Ann Intern Med. 1990;112:577–81. [PubMed:2327677]

    Article  PubMed  CAS  Google Scholar 

  84. Erzurum SC, Leff JA, Cochran JE, Ackerson LM, Szefler SJ, Martin RJ, et al. Lack of benefit of methotrexate in severe, steroid-dependent asthma. A double-blind, placebo-controlled study. Ann Intern Med. 1991;114:353–60. [PubMed:1992876]

    Article  PubMed  CAS  Google Scholar 

  85. Davies H, Olson L, Gibson P. Methotrexate as a steroid sparing agent for asthma in adults. Cochrane Database Syst Rev. 2000:CD000391. [PubMed:10796540]

    Google Scholar 

  86. Sullivan SD, Rasouliyan L, Russo PA, Kamath T, Chipps BE, TENOR Study Group. Extent, patterns, and burden of uncontrolled disease in severe or difficult-to-treat asthma. Allergy. 2007;62:126–33. [PubMed:17298420]

    PubMed  CAS  Google Scholar 

  87. Fajt ML, Wenzel SE. Development of new therapies for severe asthma. Allergy Asthma Immunol Res. 2017;9:3–14. [PubMed:27826957]

    Article  PubMed  CAS  Google Scholar 

  88. Cox PG, Miller J, Mitzner W, et al. Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations. Eur Respir J. 2004;24:659–63. [PubMed:15459147]

    Article  PubMed  CAS  Google Scholar 

  89. Benayoun L, Druilhe AM, Aubier M, et al. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167:1360–8. [PubMed:12531777]

    Article  PubMed  Google Scholar 

  90. Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, et al. Reduction in airway hyper responsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol. 2004;97:1946–53. [PubMed:15258133]

    Article  PubMed  CAS  Google Scholar 

  91. Brown RH, Wizeman W, Danek C, et al. In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography. J Appl Physiol. 2005;98:1603–6. [PubMed:15718404]

    Article  PubMed  Google Scholar 

  92. Dyrda P, Tazzeo T, Doharris L, et al. Acute response of airway muscle to extreme temperature includes disruption of actin-myosin interaction. Am J Respir Cell Mol Biol. 2011;44:213–21. [PubMed:20395634]

    Article  PubMed  CAS  Google Scholar 

  93. Miller JD, Cox G, Vincic L, et al. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest. 2005;127(6):1999–2006. [PubMed:15947312]

    Article  PubMed  Google Scholar 

  94. Cox G, Thomson NC, Rubin AS, Niven RM, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356:1327–37. [PubMed:17392302]

    Article  PubMed  CAS  Google Scholar 

  95. Pavord ID, Cox G, Thomson NC, et al. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007;176:1185–91. [PubMed:17901415]

    Article  PubMed  CAS  Google Scholar 

  96. Castro M, Rubin AS, Laviolette M, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181:116–24. [PubMed:19815809]

    Article  PubMed  PubMed Central  Google Scholar 

  97. Burn J, Sims AJ, Keltie K, et al. Procedural and short-term safety of bronchial thermoplasty in clinical practice: evidence from a national registry and hospital episode statistics. J Asthma. 2017;54:872–9. [PubMed:27905828]

    Article  PubMed  Google Scholar 

  98. Doeing DC, Mahajan AK, White SR, et al. Safety and feasibility of bronchial thermoplasty in asthma patients with very severe fixed airflow obstruction: a case series. J Asthma. 2013;50:215–8. [PubMed:23252954]

    Article  PubMed  Google Scholar 

  99. Chanez P, Boulet LP, Brillet PY, et al. Bronchial thermoplasty in the treatment of severe adult asthma. Rev Mal Respir. 2015;32:97–109. [PubMed:25534552]

    Article  PubMed  CAS  Google Scholar 

  100. Cox G, Miller JD, McWilliams A, et al. Bronchial thermoplasty for asthma. Am J Respir Crit Care Med. 2006;173:965–9. [PubMed:16456145]

    Article  PubMed  Google Scholar 

  101. Pavord ID, Thomson NC, Niven RM, Corris PA, Chung KF, Cox G, Armstrong B, Shargill NS, Laviolette M. Research in severe asthma trial study group. Safety of bronchial thermoplasty in patients with severe refractory asthma. Ann Allergy Asthma Immunol. 2013;111:402–7. [PubMed:24125149]

    Article  PubMed  Google Scholar 

  102. Wechsler ME, Laviolette M, Rubin AS, et al. Bronchial thermoplasty: long-term safety and effectiveness in patients with severe persistent asthma. J Allergy Clin Immunol. 2013;132:1295–302. [PubMed:23998657]

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cangelosi MJ, Ortendahl JD, Meckley LM, et al. Cost-effectiveness of bronchial thermoplasty in commercially-insured patients with poorly controlled, severe, persistent asthma. Expert Rev Pharmacoecon Outcomes Res. 2015;15:357–64. [PubMed:25363000]

    Article  PubMed  Google Scholar 

  104. Zein JG, Menegay MC, Singer ME, et al. Cost effectiveness of bronchial thermoplasty in patients with severe uncontrolled asthma. J Asthma. 2016;53:194–200. [PubMed:26377375]

    Article  PubMed  Google Scholar 

  105. Doeing DC, Husain AN, Naureckas ET, et al. Bronchial thermoplasty failure in severe persistent asthma: a case report. J Asthma. 2013;50:799–801. [PubMed:23651158]

    Article  PubMed  Google Scholar 

  106. Moore WC, Castro M. The many “buckets” of severe asthma: moving toward personalized management. J Allergy Clin Immunol Pract. 2017;5:936–7. [PubMed:28689844]

    Article  PubMed  Google Scholar 

  107. Fitzpatrick AM, Moore WC. Severe asthma phenotypes — how should they guide evaluation and treatment? J Allergy Clin Immunol Pract. 2017;5:901–8. [PubMed:28689840]

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ciprandi G, Tosca MA, Silvestri M, Ricciardolo FLM. Inflammatory biomarkers for asthma endotyping. Expert Rev Clin Immunol. 2017;13:715–21. [PubMed:28347164]

    Article  PubMed  CAS  Google Scholar 

  109. Glass TA, Goodman SN, Hernan MA, Samet JM. Causal inference in public health. Annu Rev Public Health. 2013;34:61–75. [PubMed:23297653]

    Article  PubMed  PubMed Central  Google Scholar 

  110. Passalacqua G. Anti-interleukin 5 therapies in severe asthma. Lancet Respir Med. 2017;5:537–8. [PubMed:28576696]

    Article  PubMed  CAS  Google Scholar 

  111. Bunyavanich S, Schadt EE. Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol. 2015;135:31–42. [PubMed:25468194]

    Article  PubMed  Google Scholar 

  112. Park HW, Tantisira KG, Weiss ST. Pharmacogenomics in asthma therapy: where are we and where do we go? Annu Rev Pharmacol Toxicol. 2014;55:129–47. [PubMed:25292431]

    Article  PubMed  CAS  Google Scholar 

  113. Heaney LG, Mcgarvey LPA. Personalised medicine for asthma and chronic obstructive pulmonary disease. Respiration. 2017;93:153–61. [PubMed:28110335]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, F., Zhang, JY., Yang, HK., Wang, F. (2018). Asthma Precision. In: Wang, X., Chen, Z. (eds) Genomic Approach to Asthma. Translational Bioinformatics, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-10-8764-6_17

Download citation

Publish with us

Policies and ethics