Skip to main content

Integrative Omics for Interactomes

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Single-layer omics provide limited insight, whereas integrated multi-omics layers allow understanding of their combined influence on the complex biological process. The integrative omics approach has been initially applied to cancer research and later used in understanding host-pathogen interactions and pluripotency regulatory networks in stem cells. Here, different multi-omics layers along with databases and tools specific for multiple data integration, visualization, and integrated network modeling are described. In summary, this chapter focuses on integrative analysis of different multi-omics layers and modeling of interactomes to identify robust biomarkers and biological processes associated with diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandar V, Nayar PG, Murugesan R, Mary B, Darshana P et al (2015) CardioGenBase: a literature based multi-omics database for major cardiovascular diseases. PLoS One 10:e0143188

    Article  Google Scholar 

  • Bonnet E, Calzone L, Michoel T (2015) Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol 11:e1003983

    Article  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  Google Scholar 

  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  Google Scholar 

  • Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120

    Article  CAS  Google Scholar 

  • Cavill R, Jennen D, Kleinjans J, Briede JJ (2016) Transcriptomic and metabolomic data integration. Brief Bioinform 17:891–901

    Article  Google Scholar 

  • Chakravorty D, Jana T, Das Mandal S, Seth A, Bhattacharya A et al (2017) MYCbase: a database of functional sites and biochemical properties of Myc in both normal and cancer cells. BMC Bioinformatics 18:224

    Article  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  Google Scholar 

  • Concepts of genetics (2012) (10th ed.). San Francisco: Pearson Education. ISBN:978-0-321-72412-0

    Google Scholar 

  • Culver KW, Labow MA (2002) Genomics. In: Robinson R (ed) Genetics. Macmillan Science Library. Macmillan Reference USA, New York ISBN:978-0-02-865606-9

    Google Scholar 

  • Ewing RM, Chu P, Elisma F, Li H, Taylor P et al (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  Google Scholar 

  • Fernandes M, Husi H (2017) Establishment of a integrative multi-omics expression database CKDdb in the context of chronic kidney disease (CKD). Sci Rep 7:40367

    Article  CAS  Google Scholar 

  • Friedman N, Rando OJ (2015) Epigenomics and the structure of the living genome. Genome Res 25:1482–1490

    Article  CAS  Google Scholar 

  • Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27:137–139

    Article  CAS  Google Scholar 

  • Gorenshteyn D, Zaslavsky E, Fribourg M, Park CY, Wong AK et al (2015) Interactive big data resource to elucidate human immune pathways and diseases. Immunity 43:605–614

    Article  CAS  Google Scholar 

  • Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    Article  CAS  Google Scholar 

  • Gupta AK, Kaur K, Rajput A, Dhanda SK, Sehgal M et al (2016) ZikaVR: an integrated Zika virus resource for genomics, proteomics, Phylogenetic and Therapeutic Analysis. Sci Rep 6:32713

    Article  CAS  Google Scholar 

  • Ha MJ, Baladandayuthapani V, Do KA (2015) DINGO: differential network analysis in genomics. Bioinformatics 31:3413–3420

    Article  CAS  Google Scholar 

  • Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM (2017) Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 13:922

    Article  Google Scholar 

  • Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918

    Article  CAS  Google Scholar 

  • Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380

    Article  CAS  Google Scholar 

  • Kartashov AV, Barski A (2015) BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data. Genome Biol 16:158

    Article  Google Scholar 

  • Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ et al (2018) Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res 46:D558–D566

    Article  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    Article  CAS  Google Scholar 

  • Lindon JC, Nicholson JK (2008) Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trac-Trend Anal Chem 27:194–204

    Article  CAS  Google Scholar 

  • MacArthur BD, Sevilla A, Lenz M, Muller FJ, Schuldt BM et al (2012) Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 14:1139–1147

    Article  CAS  Google Scholar 

  • Manes NP, Shulzhenko N, Nuccio AG, Azeem S, Morgun A et al (2017) Multi-omics comparative analysis reveals multiple layers of host signaling pathway regulation by the gut microbiota. mSystems 2:e00107

    Article  Google Scholar 

  • Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62

    Article  CAS  Google Scholar 

  • Montague E, Janko I, Stanberry L, Lee E, Choiniere J et al (2015) Beyond protein expression, MOPED goes multi-omics. Nucleic Acids Res 43:D1145–D1151

    Article  CAS  Google Scholar 

  • Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402

    Article  CAS  Google Scholar 

  • Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850

    Article  CAS  Google Scholar 

  • Rohart F, Gautier B, Singh A, Le Cao KA (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752

    Article  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  Google Scholar 

  • Saha S, Ewing R (2011) Systemic discovery of condition specific Wnt signalling subnetworks. In: IEEE international conference on bioinformatics and biomedicine workshops

    Google Scholar 

  • Stumpf PS, Ewing R, MacArthur BD (2016) Single-cell pluripotency regulatory networks. Proteomics 16:2303–2312

    Article  CAS  Google Scholar 

  • Tuncbag N, Gosline SJ, Kedaigle A, Soltis AR, Gitter A et al (2016) Network-based interpretation of diverse high-throughput datasets through the omics integrator software package. PLoS Comput Biol 12:e1004879

    Article  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U et al (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  CAS  Google Scholar 

  • Vasaikar SV, Straub P, Wang J, Zhang B (2018) LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res 4:D956–D963

    Article  Google Scholar 

  • Wang J, Rao S, Chu J, Shen X, Levasseur DN et al (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368

    Article  CAS  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385

    Article  CAS  Google Scholar 

  • Wang Z, Jensen MA, Zenklusen JC (2016) A practical guide to the Cancer genome atlas (TCGA). Methods Mol Biol 1418:111–141

    Article  Google Scholar 

  • Woo HG, Choi JH, Yoon S, Jee BA, Cho EJ et al (2017) Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun 8:839

    Article  Google Scholar 

  • Xia J, Gill EE, Hancock RE (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10:823–844

    Article  CAS  Google Scholar 

  • Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16

    Article  CAS  Google Scholar 

  • Yifeng L, Fang-Xiang W, Alioune N (2016) A review on machine learning principles for multi-view biological data integration. Brief Bioinform 1–16

    Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravorty, D., Banerjee, K., Saha, S. (2018). Integrative Omics for Interactomes. In: Singh, S. (eds) Synthetic Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8693-9_3

Download citation

Publish with us

Policies and ethics