Skip to main content

Fungal Nanoparticles: A Novel Tool for a Green Biotechnology?

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

Bio-nanotechnology is regarded as one of the key technologies of the twenty-first century. In bio-nanotechnology, green methods or green chemistry is employed with the biological systems to fabricate nanostructures. Microorganisms have a promising role in biosynthesis of nanoparticles, especially fungi that secrete enzymes and proteins as reducing agents which can be used for synthesis of metal nanoparticles from metal salts with great potential. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. Increased surface and shape of nanoparticles are responsible for their different chemical, optical, mechanical, and magnetic properties. Use of bio-nanotechnology for synthesis of nanoparticles is a rapidly developing and emerging field. However, nanoparticle biocompatibility must be tested to access their safety before use in different fields. Prior to the clinical use, in vivo evaluation of nanoparticles should demonstrate a high degree of biocompatibility, with minimal negative effects on cell viability, immune function, and blood components. Safety of using nanoparticles in food industry, medicine, pharmaceutical, and agriculture fields should be evaluated to assure human health. The extremely small size of nanomaterials makes them more readily taken up by living tissue and possibly dangerous to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham I, El-Sayed K, Chen Z, Guo H (2012) Current status on marine products with reversal effect on cancer multidrug resistance. Mar Drugs 10:2312–2321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  CAS  Google Scholar 

  • Adam S (2012) The need for stronger nanotechnology regulation. Food Safety News http://www.foodsafetynews.com

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3:43–55

    Google Scholar 

  • Aguilera JM (2014) Where is the nano in our foods? J Agric Food Chem 62:9953–9956

    Article  PubMed  CAS  Google Scholar 

  • Alejandro P (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12–18

    Google Scholar 

  • Amin B, Namvar F, Moniri M, Tahir P, Azizi S, Rosfarizan M (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  Google Scholar 

  • Anderson D, Sydor M, Fletcher P, Holian A (2016) Nanotechnology: the risks and benefits for medical diagnosis and treatment. J Nanomed Nanotechnol 7:e143. https://doi.org/10.4172/2157-7439.1000e143

    Article  Google Scholar 

  • Arif N, Yadav V, Singh S, Singh S, Mishra RK, Sharma S, Dubey NK, Tripathi DK, Chauhan DK (2016) Current trends of engineered nanoparticles (ENPs) in sustainable agriculture: an overview. J Environ Anal Toxicol 6:397–401

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Azmath P, Baker S, Devaraju R, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24:140–146

    Article  PubMed  Google Scholar 

  • Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh S (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26:5901–5908

    Article  PubMed  CAS  Google Scholar 

  • Bhagat Y, Chidan G, Rabinal C, Gaurav C, Ugale P (2015) Nanotechnology in agriculture: a review. J Pure Appl Microbiol 9:1–11

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319

    Chapter  Google Scholar 

  • Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bose P, Uma G (2017) Mycosynthesis, optimisation and characterization of silver nanoparticles by endophytic fungus isolated from the root of Casuarina junghuhniana Miq. Intr J Pharm Sci Rev Res 43:107–115

    CAS  Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Intr Food Res J 15:237–248

    Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor A, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari S, Damahe, Kumbhar P (2016) Silver nanoparticles – a review with focus on green synthesis. Intr J Pharma Res Rev 5:14–28

    CAS  Google Scholar 

  • Chaudhry Q (2016) Nanotechnology applications for food and packaging: current trends and future challenges. In: 7th Asian conference on food and nutrition safety. University of Chester, UK

    Google Scholar 

  • Coles D, Frewer L (2013) Nanotechnology applied to European food production: a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43

    Article  CAS  Google Scholar 

  • Cross S, Roberts M (2000) The effect of occlusion on epidermal penetration of parabens from a commercial allergy test ointment, acetone and ethanol vehicles. J Invest Dermatol 115:914–918

    Article  PubMed  CAS  Google Scholar 

  • Dameron C, Reeser R, Mehra R, Kortan A, Carroll P, Steigerwald M, Brus L, Winge D (1989) Biosynthesis of cadmium sulfide quantum semiconductor nanocrystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Darbre P, Aljarrah A, Miller W, Coldham N, Sauer M, Pope G (2004) Concentrations of parabens in human breast tumours. J Appl Toxicol 24:5–13

    Article  PubMed  CAS  Google Scholar 

  • David B, Tinkle S (2007) Ethics in nanomedicine. Nanomedicine (Lond) 2:345–350

    Article  PubMed  Google Scholar 

  • Derek F, Jennifer J, Monaliben Shah M, Shashi B, Gerrard E (2017) A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 2017:1–15

    Google Scholar 

  • Donhowe G, Fennema O (1993) The effect of plasticizers on crystallinity, permeability, mechanical properties of methylcellulose films. J Food Process Preserv 17:247–257

    Article  CAS  Google Scholar 

  • Drexler E (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci 78:5275–5278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duran N, Marcato P (2013) Nanobiotechnology perspectives: role of nanotechnology in the food industry: a review. Intr J Food Sci Technol 48:1127–1134

    Article  CAS  Google Scholar 

  • Feng X, Chen A, Zhang Y, Wang J, Shao L, Limin Wei L (2015) Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomed 10:3547–3565

    Article  CAS  Google Scholar 

  • Feynman R (1991) There’s plenty of room at the bottom. Science 29:1300–1301

    Google Scholar 

  • Fraceto L, Grillo R, Gerson A, Viviana S, Rea G, Cecilia B (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20–24

    Article  Google Scholar 

  • Freitas RA (1999) Nanomedicine, vol. I: basic capabilities. Landes Bioscience, Georgetown. http://www.nanomedicine.com/NMI.htm

  • Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:1–5

    Article  Google Scholar 

  • Galili U (2017) a-Gal nanoparticles in wound and burn healing acceleration. Adv Wound Care 6:81–92

    Article  Google Scholar 

  • Gatti A (2004) Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25:385–392

    Article  PubMed  CAS  Google Scholar 

  • Gatti A, Rivasi F (2002) Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23:2381–2387

    Article  PubMed  CAS  Google Scholar 

  • Global Market Insight Silver Nanoparticles Market (2017) https://www.gminsights.com/industry-analysis/silver-nanoparticles-market

  • Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash PC, Fraceto LF, Lima R (2017) Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421. https://doi.org/10.1038/srep44421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and application of nanoparticles in biology. Recent Res Sci Technol 4:36–38

    CAS  Google Scholar 

  • Gwinn M, Val V (2006) Nanoparticles: health effects-pros and cons. Environ Health Perspect 114:1818–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handy R, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  PubMed  CAS  Google Scholar 

  • Ingale A, Chaudhari A (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4:165–171

    Article  CAS  Google Scholar 

  • Jacob S, Finu J, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Leach J, Ye K (2009) Nanoparticle-mediated gene delivery. Methods Mol Biol 544:547–557

    Article  PubMed  CAS  Google Scholar 

  • Johanna C, Sujey P, Gonzalo A, Hans F, Jara M, Javier O (2016) Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer. Nanomedicine 11:171–187

    Article  CAS  Google Scholar 

  • Jong W, Borm P (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Josef J, Katarina K (2015) Applications of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng 22:321–361

    Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamoun E, Kenawy E, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karimi S, Khabat V (2016) Biosynthesis of nanoparticles by fungi: large-scale production. In: Fungal metabolites. Springer, Cham, pp 1–20. https://doi.org/10.1007/978-3-319-19456-1_8-1

    Chapter  Google Scholar 

  • Keck C, Muller R (2013) Nanotoxicological classification system (NCS)- a guide for risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84:445–448

    Article  PubMed  CAS  Google Scholar 

  • Khalid A, Younis S, Ali A, Khalid S, Mustafa A, Sherif M (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifera. Saudi J Biol Sci 24:208–216

    Article  CAS  Google Scholar 

  • Khan N, Jameel J, Jameel N, Rheman S (2017) An overview: biosynthesized nanoparticles with their potential applications. Glob J Nanomed 2:1–4

    Google Scholar 

  • Khandel P, Kumar S (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostructures 6:1–24

    Google Scholar 

  • Khatoon S, Ahmad T (2012) Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J Mater Sci Eng B6:325–333

    Google Scholar 

  • Khwaja S, Azamal H (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98–113

    Article  CAS  Google Scholar 

  • Kim K, Sung W, Suh B, Moon S, Choi J, Kim J, Lee D (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  PubMed  CAS  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbiol Biotechnol 8:904–917

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailabililty, and effects. Environ Toxicol Chem 27:1825–1851

    Article  PubMed  CAS  Google Scholar 

  • Kokura S, Handa O, Takagi T, Takeshi I, Yuji N, Toshikazu Y (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574

    Article  CAS  Google Scholar 

  • Konop M, Damps T, Misicka A, Lidia R (2016) Certain aspects of silver and silver nanoparticles in wound care: a mini review. J Nanomater 2016:1–10

    Article  CAS  Google Scholar 

  • Kuzma J, Romanchek J, Kokotovich A (2008) Upstream oversight assessment for agrifood nanotechnology: a case studies approach. Risk Anal 28:1081–1098

    Article  PubMed  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Li L, Istvan S, Liu X, Zhang R (2017) Nanobiointerface: advances and challenges. University of Queensland, Brisbane

    Google Scholar 

  • Liu Q, Jiang H (2017) In vitro cytotoxicity of Tanacetum vulgare mediated silver nanoparticles against breast cancer (MCF-7) cell lines. Biomed Res 28:1354–1358

    CAS  Google Scholar 

  • Magnuson B, Jonaitis T, Card J (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76:126–133

    Article  CAS  Google Scholar 

  • Malik T, Chauhan G, Rath G, Murthy R, Goya A (2017) Fusion and binding inhibition key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv 24:608–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal D, Bolander M et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Markus K, James L (1995) Prospects in nanotechnology: toward molecular manufacturing. In: Markus K, James L (eds). Wiley Publisher, New York

    Google Scholar 

  • McClements D, Decker E, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Chetan K, Abhilash P, Fraceto L, Singh H (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471–482

    PubMed  PubMed Central  Google Scholar 

  • Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J Soc Interface 12:08–91

    Google Scholar 

  • Mohana S, Sumathi S (2017) A mini review on fungal based synthesis of silver nanoparticles and their antimicrobial activity. Int J Chem Tech Res 10:367–377

    Google Scholar 

  • Mohanta Y, Panda S, Bastia A, Tapan K (2017) Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front Microbiol 8:626–635

    Article  PubMed  PubMed Central  Google Scholar 

  • Neethirajan S, Jayas D (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ottoni CA, Simões MF, Fernandes S, Dos Santos JG, da Silva ES, de Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palanivel V, Muthusamy G, Ramaraj R, Perumal V (2017) Future prospects in bionanotechnologies. National University, Jeonbuk

    Google Scholar 

  • Pantidos N, Louise E (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5–14

    Article  CAS  Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings 1724, 020048 (2016). doi: https://doi.org/10.1063/1.4945168

  • Pedro P, Vinhas R, Fernandes A, Pedro V (2015) Gold nanotheranostics: proof-of-concept or clinical tool? Nano 5:1853–1879

    Google Scholar 

  • Peterson C (2004) Nanotechnology: from Feynman to the grand challenge of molecular manufacturing. In: IEEE technology and society magazine, 2004

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. ISBN: 978-3-319-42989-2

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Vivek K, Prasad K (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pridgen E, Alexis F, Farokhzad O (2015) Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv 12:1459–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Protima R, Rauwel E (2017) Emerging trends in nanoparticle synthesis using plant extracts for biomedical applications. Glob J Nanomed 1:001–003

    Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles- a material of the future? Open Chem 14:76–91

    Article  CAS  Google Scholar 

  • Rai M, Alka Yadav A, Paul B, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Rai M, Gade A, Gaikwad S, Marcato P, Duran N (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23:14–24

    CAS  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98:1951–1961. https://doi.org/10.1007/s00253-013-5473-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raj S, Shoma J, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranjan K, Joshi S (2012) Endophytic fungal bionanotechnology: present status & future perspectives. Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shilong

    Google Scholar 

  • Reiss G, Hutten A (2010) Magnetic Nanoparticles. In: Sattler KD (ed) Handbook of nanophysics: nanoparticles and quantum dots. CRC Press, Boca Raton, pp 2–1. ISBN 9781420075458

    Google Scholar 

  • Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, Cairns WR, Vindigni V, Azzena B, Barbante C, Zavan B (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14:4817–4840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudramurthy G, Swamy M, Uma R, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836–865

    Article  CAS  PubMed Central  Google Scholar 

  • Salaheldin TA, Husseiny SM, Al-Enizi AM, Elzatahry A, Cowley AH (2016.) (2016) Evaluation of the cytotoxic behavior of fungal extracellular synthesized Ag nanoparticles using confocal laser scanning microscope. Int J Mol Sci 17:329–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–8

    Article  Google Scholar 

  • Sandhu S, Shukla H, Shukla S (2017) Biosynthesis of silver nanoparticles by endophytic fungi: its mechanism, characterization techniques and antimicrobial potential. Afr J Biotechnol 16:683–698

    Article  Google Scholar 

  • Sastry M, Ahmad A, Khan I, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Scorzoni L, de Paula E Silva AC, Marcos CM, Assato PA, de Melo WC, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJ, Fusco-Almeida AM (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front J Microbiol 8:36–58

    Google Scholar 

  • Sekhon B (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3:1–15

    Google Scholar 

  • Sekhon B (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:51–53

    Google Scholar 

  • Shakeel A, Mudasir A, Swami B, Saiqa I (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  Google Scholar 

  • Sharma D, Singh D (2016) Bio-nanotechnology for active food packaging. J Appl Pharm Sci 6:220–226

    Article  CAS  Google Scholar 

  • Shukla H, Singh S (2017) Mycofabrication and characterization of silver nanoparticles by using some endophytic fungi with special reference to their antimicrobial potential. Intr J Nanotechnol Appl 7:7–2

    Google Scholar 

  • Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909. https://doi.org/10.3389/fmicb.2017.01909

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohel R, Raul F, Vijay K, Joshi M, Thomas S (2017) Nanomaterials from natural products for industrial applications. University of Minho, Minho

    Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Navin J, Panwar J (2015) Nano-fertilizers and their smart delivery system. Rai M, Caue R, Luiz M, Nelson D Nanotechnologies in food and agriculture, Springer Cham. 81–102

    Google Scholar 

  • Souza V, Fernando A (2016) Nanoparticles in food packaging: biodegradability and potential migration to food. A review. Food Packag Shelf Life 8:63–70

    Article  Google Scholar 

  • Srinivas K (2015) Drug delivery using nanotechnology: advantages and risks on human health. Res J Pharm Biol Chem Sci 7:863–877

    Google Scholar 

  • Stark W (2011) Nanoparticles in biological systems. Angew Chem Int Ed Engl 50:1242–1258

    Article  PubMed  CAS  Google Scholar 

  • Sunkar S, Valli N (2013) Endophytic fungi mediated extracellular silver nanoparticles as effective antibacterial agents. Int J Pharm Pharm Sci 5:95–100

    CAS  Google Scholar 

  • Swati G, Satish S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6:48–53

    Google Scholar 

  • The global market (2015) Nanomaterials, forecast from 2010 to 2025, Future markets, Ed. 2, February 2015

    Google Scholar 

  • Thul S, Bijay K, Pandey R (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1–7

    Article  Google Scholar 

  • Trujillo L, Avalos R, Granda S, Guerra L, Pais-Chanfrau J (2016) Nanotechnology applications for food and bioprocessing industries. Biol Med 8:289–294

    Article  CAS  Google Scholar 

  • Velusamy P, Kumar G, Jeyanthi V, Das J, Raman P (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volesky B, Holan Z (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  PubMed  CAS  Google Scholar 

  • World Population Project. www.un.org/en/development/desa/news/population/2015-report.html

  • Xia T, Li N, Nel A (2009) Potential health impact of nanoparticles. Ann Rev Public Health 30:137–150

    Article  Google Scholar 

  • Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomed 11:1899–1906

    CAS  Google Scholar 

  • Yadav K, Singh J, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. JMES 8:740–757

    CAS  Google Scholar 

  • Yah C, Simate G (2015) Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU J Pharm Sci 23:43–56

    Article  CAS  Google Scholar 

  • Yang Y, Hong H (2015) A review on antimicrobial silver absorbent wound dressings applied to exuding wounds. J Microbiol Biochem Technol 7:228–233

    CAS  Google Scholar 

  • Yetisen A, Hang Q, Amir M, Haider B, Dokmeci M, Juan P, Maksim S, Ali K, Yun S (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068

    Article  PubMed  CAS  Google Scholar 

  • Yevgen N, Zhen H, Han T, Paul J, Mainelis G (2012) Nanomaterial inhalation exposure from nanotechnology based cosmetic powders: a quantitative assessment. J Nanopart Res 14:1229–1243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Aziz, S.M., Prasad, R., Hamed, A.A., Abdelraof, M. (2018). Fungal Nanoparticles: A Novel Tool for a Green Biotechnology?. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_3

Download citation

Publish with us

Policies and ethics