Skip to main content

Biomedical Image Enhancement Using Different Techniques - A Comparative Study

  • Conference paper
  • First Online:
Data Science and Analytics (REDSET 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 799))

Abstract

In medical applications, processing of various medical images like chest X-rays, projection images of trans-axial tomography, cineangiograms and other medical images that occur in radiology, ultrasonic scanning and nuclear magnetic resonance (NMR) is required. These images may be used for patients’ screening and monitoring for detection of diseases in patients. Image enhancement algorithms are employed to emphasize, smoothen or sharpen image features for display and analysis. In the biomedical field, image enhancement faces the greatest difficulty in quantifying the criterion for enhancement. Enhancement methods are application specific and often developed empirically. The theme work presented in this paper is a detailed analysis of enhancement of medical images using contrast manipulation, noise reduction, edge sharpening, gray level slicing, edge crispening, magnification, interpolation, and pseudo-coloring. Comparison of these techniques is necessary for deciding an apt algorithm applicable for enhancement of all medical images and further processing. This paper reviews the background of enhancement techniques in three domains i.e. spatial, frequency and fuzzy domain. The comparative analysis of different techniques is shown using results that are obtained by applying these techniques to medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Przytulska, M., Kulikowski, J.L.: Quantitative test-based assessment of biomedical image enhancement procedures. Biocybern. Biomed. Eng. 36(1), 205–216 (2016)

    Article  Google Scholar 

  2. Isa, I.S., Sulaiman, S.N., Mustapha, M., Karim, N.K.A.: Automatic contrast enhancement of brain MR images using Average Intensity Replacement based on Adaptive Histogram Equalization (AIR-AHE). Biocybern. Biomed. Eng. 37(1), 24–34 (2017)

    Article  Google Scholar 

  3. Gao, G., Wan, X., Yao, S., Cui, Z., Zhou, C., Sun, X.: Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385, 250–265 (2017)

    Article  Google Scholar 

  4. Gonzalez, R.C., Woods, R.E.: Image processing. Digital image processing, 2nd edn. (2007)

    Google Scholar 

  5. Wu, Q., Merchant, F., Castleman, K.: Microscope Image Processing. Academic Press, Boston (2013)

    Google Scholar 

  6. Perperidis, A., Cusack, D., White, A., McDicken, N., MacGillivray, T., Anderson, T.: Dynamic enhancement of B-mode cardiac ultrasound image sequences. Ultrasound Med. Biol. 43(7), 1533–1548 (2017)

    Article  Google Scholar 

  7. Maurya, L., Mahapatra, P.K., Kumar, A.: A social spider optimized image fusion approach for contrast enhancement and brightness preservation. Appl. Soft Comput. 52, 575–592 (2017)

    Article  Google Scholar 

  8. Chou, G.Y., Moy, L., Kim, S.G., Leite, A.P.K., Baete, S.H., Babb, J.S., Sodickson, D.K., Sigmund, E.E.: Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous tissue. Eur. J. Radiol. 84, 1888–1893 (2015)

    Article  Google Scholar 

  9. Pratt, W.K.: Introduction to Digital Image Processing. CRC Press, Boco Raton (2013)

    Book  Google Scholar 

  10. Milanfar, P.: A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Sig. Process. Mag. 30(1), 106–128 (2013)

    Article  Google Scholar 

  11. Akila, K., Jayashree, L.S., Vasuki, A.: Mammographic image enhancement using indirect contrast enhancement techniques–a comparative study. Procedia Comput. Sci. 47, 255–261 (2015)

    Article  Google Scholar 

  12. Zhang, K., Wang, H., Yuan, B., Wang, L.: An image enhancement technique using nonlinear transfer function and unsharp masking in the multispectral endoscope. In: International Conference on Innovative Optical Health Science, p. 1024504. International Society for Optics and Photonics, January 2017

    Google Scholar 

  13. Liu, S.: Study on medical image enhancement based on wavelet transform fusion algorithm. J. Med. Imaging Health Inform. 7(2), 388–392 (2017)

    Article  Google Scholar 

  14. Li, W., Zhao, Z., Du, J., Wang, Y.: Edge-preserve filter image enhancement with application to medical image fusion. J. Med. Imaging Health Inform. 7(1), 16–24 (2017)

    Article  Google Scholar 

  15. Ko, J., Hong, W.K.: Inverse sigmoid-based X-Ray image enhancement. Indian J. Sci. Technol. 9(47) (2016)

    Google Scholar 

  16. Daniel, E., Anitha, J.: Optimum wavelet-based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Comput. Biol. Med. 71, 149–155 (2016)

    Article  Google Scholar 

  17. Grigoryan, A.M., Johna, A., Agaian, S.S.: Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2-D QDFT. In: SPIE Medical Imaging, p. 1013618. International Society for Optics and Photonics, March 2017

    Google Scholar 

  18. Rui, W., Guoyu, W.: Medical X-ray image enhancement method based on dark channel prior. In: Proceedings of the 5th International Conference on Bioinformatics and Computational Biology, pp. 38–41. ACM, January 2017

    Google Scholar 

  19. Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. (2017)

    Google Scholar 

  20. Teare, P., Fishman, M., Benzaquen, O., Toledano, E., Elnekave, E.: Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement. J. Digit. Imaging 30, 1–7 (2017)

    Article  Google Scholar 

  21. Magudeeswaran, V., Ravichandran, C.G., Thirumurugan, P.: Brightness preserving bi-level fuzzy histogram equalization for MRI brain image contrast enhancement. Int. J. Imaging Syst. Technol. 27(2), 153–161 (2017)

    Article  Google Scholar 

  22. Zhou, F., Jia, Z., Yang, J., Kasabov, N.: Method of improved fuzzy contrast combined adaptive threshold in NSCT for medical image enhancement. BioMed. Res. Int. (2017)

    Google Scholar 

  23. Rubio, Y., Montiel, O., Sepúlveda, R.: Microcalcification detection in mammograms based on fuzzy logic and cellular automata. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 583–602. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47054-2_38

    Chapter  Google Scholar 

  24. Rao, B.S.: A fuzzy fusion approach for modified contrast enhancement based image forensics against attacks. Multimedia Tools Appl. 1–21 (2017)

    Google Scholar 

  25. Magudeeswaran, V., Singh, J.F.: Contrast limited fuzzy adaptive histogram equalization for enhancement of brain images. Int. J. Imaging Syst. Technol. 27(1), 98–103 (2017)

    Article  Google Scholar 

  26. Reyes-Galaviz, O.F., Pedrycz, W.: Enhancement of the classification and reconstruction performance of fuzzy C-means with refinements of prototypes. Fuzzy Sets Syst. 318, 80–99 (2017)

    Article  MathSciNet  Google Scholar 

  27. Chaira, T.: An improved medical image enhancement scheme using type II fuzzy set. Appl. Soft Comput. 25, 293–308 (2014)

    Article  Google Scholar 

  28. Gandhamal, A., Talbar, S., Gajre, S., Hani, A.F.M., Kumar, D.: Local gray level S-curve transformation–a generalized contrast enhancement technique for medical images. Comput. Biol. Med. 83, 120–133 (2017)

    Article  Google Scholar 

  29. deAraujo, A.F., Constantinou, C.E., Tavares, J.M.R.: Smoothing of ultrasound images using a new selective average filter. Expert Syst. Appl. 60, 96–106 (2016)

    Article  Google Scholar 

  30. Cao, W., Zhou, Y., Chen, C.P., Xia, L.: Medical image encryption using edge maps. Sig. Process. 132, 96–109 (2017)

    Article  Google Scholar 

  31. Singh, A.K., Dave, M., Mohan, A.: Hybrid technique for robust and imperceptible image watermarking in DWT–DCT–SVD domain. Natl. Acad. Sci. Lett. 37(4), 351–358 (2014)

    Article  Google Scholar 

  32. Firoz, R., Ali, M.S., Khan, M.N.U., Hossain, M.K., Islam, M.K., Shahinuzzaman, M.: Medical image enhancement using morphological transformation. J. Data Anal. Inf. Process. 4(01), 1 (2016)

    Google Scholar 

  33. Zhou, X., Zheng, Y., Tan, L., Zhao, J.: medical image contrast enhancement via wavelet homomorphic filtering transform. TELKOMNIKA (Telecommun. Comput. Electron. Control) 14(3), 1203–1212 (2016)

    Article  Google Scholar 

  34. Yang, Y., Que, Y., Huang, S., Lin, P.: Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain. IEEE Sens. J. 16(10), 3735–3745 (2016)

    Article  Google Scholar 

  35. Putzer, D., Pizzini, A., Liebensteiner, M., Moctezuma, J.L., Nogler, M.: Recognizing the surgical situs in minimally invasive hip arthroplasty: a comparison of different filtering techniques. Biocybern. Biomed. Eng. 36(1), 182–192 (2016)

    Article  Google Scholar 

  36. Rajendran, R., Rao, S.P., Agaian, S.S., Panetta, K.: A versatile edge-preserving image enhancement approach for medical images using a guided filter. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002341–002346. IEEE, October 2016

    Google Scholar 

  37. Roy, S., Pal, A.K.: A blind DCT based color watermarking algorithm for embedding multiple watermarks. AEU-Int. J. Electron. Commun. 72, 149–161 (2017)

    Article  Google Scholar 

  38. Vimala, C., Priya, P.A.: Degraded image enhancement through double density dual tree discrete wavelet transform. Indian J. Sci. Technol. 9(28) (2016)

    Google Scholar 

  39. Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Emerging applications of wavelets: a review. Phys. Commun. 3(1), 1–18 (2010)

    Article  Google Scholar 

  40. Ali, M., Ahn, C.W.: An optimized watermarking technique based on self-adaptive DE in DWT–SVD transform domain. Sig. Process. 94, 545–556 (2014)

    Article  Google Scholar 

  41. Xiao, J., Liu, E., Zhao, L., Wang, Y.F., Jiang, W.: Detail enhancement of image super-resolution based on detail synthesis. Sig. Process. Image Commun. 50, 21–33 (2017)

    Article  Google Scholar 

  42. Luo, Z., Jia, Y.: MR image contrast enhancement by wavelet-based contourlet transform. Int. J. Bioautom. 20(2) (2016)

    Google Scholar 

  43. Li, H., Wu, J., Miao, A., Yu, P., Chen, J., Zhang, Y.: Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement. Biomed. Eng. Online 16(1), 46 (2017)

    Article  Google Scholar 

  44. Verma, H.K., Pal, S.: Modified sigmoid function based gray scale image contrast enhancement using particle swarm optimization. J. Inst. Eng. (India) Ser. B 97(2), 243–251 (2016)

    Article  Google Scholar 

  45. Hu, H.M., Gao, Y., Guo, Q., Li, B.: A region-based video de-noising algorithm based on temporal and spatial correlations. Neurocomputing 266, 361–374 (2017)

    Article  Google Scholar 

  46. Koh, N.C.Y., Sim, K.S., Tso, C.P.: CT brain lesion detection through a combination of recursive sub-image histogram equalization in wavelet domain and adaptive gamma correction with weighting distribution. In: International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1–6. IEEE, November 2016

    Google Scholar 

  47. Vig, N., Budhiraja, S., Singh, J.: Hue preserving color image enhancement using a guided filter based sub image histogram equalization. In: 2016 Ninth International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE, August 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyoti Dabass or Rekha Vig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabass, J., Vig, R. (2018). Biomedical Image Enhancement Using Different Techniques - A Comparative Study. In: Panda, B., Sharma, S., Roy, N. (eds) Data Science and Analytics. REDSET 2017. Communications in Computer and Information Science, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-10-8527-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8527-7_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8526-0

  • Online ISBN: 978-981-10-8527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics