Skip to main content

Incremental Indoor Map Construction with a Single User

  • Chapter
  • First Online:
  • 720 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Lacking of floor plans is a fundamental obstacle to ubiquitous indoor location-based services. Recent work have made significant progress to accuracy, but they largely rely on slow crowdsensing that may take weeks or even months to collect enough data. In this chapter, we propose Knitter that can generate accurate floor maps by a single random user’s one-hour data collection efforts, and demonstrate how such maps can be used for indoor navigation. Knitter extracts high-quality floor layout information from single images, calibrates user trajectories, and filters outliers. It uses a multi-hypothesis map fusion framework that updates landmark positions/orientations and accessible areas incrementally according to evidences from each measurement. Our experiments on three different large buildings and 30+ users show that Knitter produces correct map topology, and 90-percentile landmark location and orientation errors of \(3\sim 5\,\mathrm{m}\) and \(4\sim 6^\circ \), comparable to the state of the art at more than \(20\times \) speed up: data collection can finish in about one hour even by a novice user trained just a few minutes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to Chebyshev’s Theorem, this removes those trajectories with extreme errors beyond 88.9% of all loops.

  2. 2.

    We also tried to place each trajectory w.r.t. all previous ones but find the much increased complexity brought only marginal improvements. Thus, we use the much simpler method as in Eq. 3.7.

References

  1. Y. Jiang, Y. Xiang, X. Pan, K. Li, Q. Lv, R.P. Dick, L. Shang, M. Hannigan, Hallway based automatic indoor floorplan construction using room fingerprints, in ACM UbiComp (2013), pp. 315–324

    Google Scholar 

  2. D. Philipp, P. Baier, C. Dibak, F. Drr, K. Rothermel, S. Becker, M. Peter, D. Fritsch, Mapgenie: Grammar-enhanced indoor map construction from crowd-sourced data, in PerCom (2014), pp. 139–147

    Google Scholar 

  3. G. Shen, Z. Chen, P. Zhang, T. Moscibroda, Y. Zhang, Walkie-markie: Indoor pathway mapping made easy, in NSDI (2013), pp. 85–98

    Google Scholar 

  4. H. Shin, Y. Chon, H. Cha, Unsupervised construction of an indoor floor plan using a smartphone. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 889–898 (2012)

    Article  Google Scholar 

  5. R. Faragher, R. Harle, Smartslam-an efficient smartphone indoor positioning system exploiting machine learning and opportunistic sensing, in ION GNSS+ (2014)

    Google Scholar 

  6. J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, A. Aggarwal, Efficient, generalized indoor wifi graphslam, in IEEE ICRA (2011), pp. 1038–1043

    Google Scholar 

  7. M. Alzantot, M. Youssef, Crowdinside: automatic construction of indoor floorplans, in SIGSPATIAL (2012), pp. 99–108

    Google Scholar 

  8. R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, X. Li, Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing, in ACM MobiCom (2014), pp. 249–260

    Google Scholar 

  9. J. Manweiler, P. Jain, R.R. Choudhury, Satellites in our pockets: an object positioning system using smartphones, in MobiSys (2012), pp. 211–224

    Google Scholar 

  10. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  11. C. Rother, A new approach to vanishing point detection in architectural environments, in BMVC, (2000), pp. 382–391

    Google Scholar 

  12. D.C. Lee, M. Hebert, T. Kanade, Geometric reasoning for single image structure recovery, in IEEE CVPR (2009), pp. 2136–2143

    Google Scholar 

  13. A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: zero-effort crowdsourcing for indoor localization, in ACM MobiCom (2012), pp. 293–304

    Google Scholar 

  14. H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, R.R. Choudhury, No need to war-drive: Unsupervised indoor localization, in ACM MobiSys (2012), pp. 197–210

    Google Scholar 

  15. P. Zhou, M. Li, G. Shen, Use it free: instantly knowing your phone attitude, in ACM MobiCom (2014), pp. 605–616

    Google Scholar 

  16. D. Gusenbauer, C. Isert, J. Krosche, Self-contained indoor positioning on off-the-shelf mobile devices, in IEEE IPIN (2010)

    Google Scholar 

  17. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in AAAI KDD (1996), pp. 226–231

    Google Scholar 

  18. G. Einicke, L. White, Robust extended kalman filtering. IEEE Trans. Signal Process. (1999)

    Google Scholar 

  19. M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam: a factored solution to the simultaneous localization and mapping problem, in AAAI (2002), pp. 593–598

    Google Scholar 

  20. D.G. Lowe, Object recognition from local scale-invariant features, in IEEE ICCV (1999), pp. 1150–1157

    Google Scholar 

  21. S. Thrun, Learning occupancy grid maps with forward sensor models. Auton. Robots 15(2), 111–127 (2003)

    Article  Google Scholar 

  22. S. Chen, M. Li, K. Ren, X. Fu, C. Qiao, Rise of the indoor crowd: Reconstruction of building interior view via mobile crowdsourcing, in ACM SenSys (2015)

    Google Scholar 

  23. Amazon mechanical turk. https://www.mturk.com

  24. Gigwalk. http://www.gigwalk.com

  25. Mobileworks. https://www.mobileworks.com

  26. Crowdflower. http://www.crowdflower.com

  27. X. Zhang, G. Xue, R. Yu, D. Yang, J. Tang, Truthful incentive mechanisms for crowdsourcing, in IEEE INFOCOM (2015), pp. 2830–2838

    Google Scholar 

  28. J. Chung, M. Donahoe, C. Schmandt, I. Kim, P. Razavai, M. Wiseman, Indoor location sensing using geo-magnetism, in MobiSys (2011), pp. 141–154

    Google Scholar 

  29. L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, F. Zhao, Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service, in ACM MobiCom (2014), pp. 459–470

    Google Scholar 

  30. N. Roy, H. Wang, R.R. Choudhury, I am a smartphone and i can tell my users walking direction, in ACM MobiSys (2014), pp. 329–342

    Google Scholar 

  31. A. Sankar, S. Seitz, Capturing indoor scenes with smartphones, in ACM UIST (2012), pp. 403–412

    Google Scholar 

  32. S. Chen, M. Li, K. Ren, C. Qiao, Crowdmap: accurate reconstruction of indoor floor plans from crowdsourced sensor-rich videos, in IEEE ICDCS (2015)

    Google Scholar 

  33. A.T. Mariakakis, S. Sen, J. Lee, K.-H. Kim, Sail: single access point-based indoor localization, in ACM MobiSys (2014), pp. 315–328

    Google Scholar 

  34. I. Simon, S.M. Seitz, S. Agarwal, N. Snavely, R. Szeliski, Building rome in a day, in ICCV (2009)

    Google Scholar 

  35. J. Dong, Y. Xiao, M. Noreikis, Z. Ou, A. Ylä-Jääski, iMoon: Using smartphones for image-based indoor navigation, in ACM SenSys (2015)

    Google Scholar 

  36. Project tango tablet hardware. https://developers.google.com/project-tango/hardware/tablet#technical_specifications

  37. S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison et al., Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera, in ACM UIST (2011), pp. 559–568

    Google Scholar 

  38. K. Konolige, M. Agrawal, Frameslam: from bundle adjustment to real-time visual mapping. IEEE Trans. Robot. 24(5), 1066–1077 (2008)

    Article  Google Scholar 

  39. B. Ferris, D. Fox, N.D. Lawrence, Wifi-slam using gaussian process latent variable models, in IJCAI, vol. 7 (2007), pp. 2480–2485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruipeng Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, R., Ye, F., Luo, G., Cong, J. (2018). Incremental Indoor Map Construction with a Single User. In: Smartphone-Based Indoor Map Construction. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-8378-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8378-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8377-8

  • Online ISBN: 978-981-10-8378-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics