Skip to main content

The Production of Recombinant Proteins from Mammalian Cells Using RNA Element

  • Chapter
  • First Online:
Applied RNA Bioscience

Abstract

Producing recombinant proteins in a large scale for pharmaceutical use is a challenging process as these proteins must be posttranscriptionally modified. Mammalian cells have proven to be good candidates for this process to take place efficiently. In order to optimize gene expression of the required proteins in mammalian cells, good vectors must be used such as the viral vectors. Vectors must be chosen cautiously according to the type of the mammalian cell line being utilized. Importantly, strong promoters must be selected to ensure large amounts of the gene(s) of interest.

The export of the messenger ribonucleic acid (mRNA) is a complex process in which many proteins are involved. A strategy to enhance recombinant protein production is to use the mRNA export pathway efficiently. In the mRNA export pathway, key proteins include the NXF1-NXT1 heterodimer. Here we introduce the use of constitutive transport element in the expression system. Constitutive transport element directly recruits mRNA export proteins NXF1-NXT1, and these events facilitate the mRNA export containing constitutive transport element. The simultaneous overexpression of mRNA export factors in addition to the use of RNA element recruiting mRNA export proteins is a potential strategy to obtain satisfactory amounts of the required proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara Y, Fujiwara N, Yamazaki T, Kambe T, Nagao M, Hirose Y, Masuda S (2011) Enhancing recombinant protein production in human cell lines with a constitutive transport element and mRNA export proteins. J Biotechnol 153:86–91

    Article  CAS  Google Scholar 

  • Almo SC, Love JD (2014) Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 26:39–43

    Article  CAS  Google Scholar 

  • Booth DS, Cheng Y, Frankel AD (2014) The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. elife 3:e04121

    PubMed  PubMed Central  Google Scholar 

  • Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, Hammarskjold ML (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication rev-independent. Proc Natl Acad Sci U S A 91:1256–1260

    Article  CAS  Google Scholar 

  • Caporilli S, Yu Y, Jiang J, White-Cooper H (2013) The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLoS Genet 9:e1003526

    Article  CAS  Google Scholar 

  • Coura S, Nardi NB (2008) A role for adeno-associated viral vectors in gene therapy. Genet Mol Biol 31:1–11

    Article  CAS  Google Scholar 

  • Das AT, Zhou X, Metz SW, Vink MA, Berkhout B (2016) Selecting the optimal Tet-On system for doxycycline-inducible gene expression in transiently transfected and stably transduced mammalian cells. Biotechnol J 11:71–79

    Article  CAS  Google Scholar 

  • Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593

    Article  CAS  Google Scholar 

  • Delaleau M, Borden KLB (2015) Multiple export mechanisms for mRNAs. Cell 4:452–473

    Article  CAS  Google Scholar 

  • Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fassler M, Weissberg I, Levy N, Diaz-Griffero F, Monsonego A, Friedman A (2013) Preferential lentiviral targeting of astrocytes in the central nervous system. PLoS One 8:e76092

    Article  CAS  Google Scholar 

  • Fung HYJ, Fu S, Chook YM (2017) Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. elife 6:e23961

    Article  Google Scholar 

  • Gruenert AK, Czugala M, Mueller C, Schmeer M, Schleef M (2016) Self-complementary adeno-associated virus vectors improve transduction efficiency of corneal endothelial cells. PLoS One 11:e0152589

    Article  Google Scholar 

  • Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    Article  CAS  Google Scholar 

  • Hendrickx R, Stichling N, Koelen J (2014) Innate immunity to adenovirus. Hum Gene Ther 25:265–284

    Article  CAS  Google Scholar 

  • Higby KJ, Bischak MM, Campbell CA, Anderson RG, Broskin SA, Foltz LE, Koper JA, Nickle AC, Resendes KK (2017) 5-Flurouracil disrupts nuclear export and nuclear pore permeability in a calcium dependent manner. Apoptosis 22:393–405

    Article  CAS  Google Scholar 

  • Hu Y (2005) Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 26:405–416

    Article  CAS  Google Scholar 

  • Hu WS, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153

    Article  CAS  Google Scholar 

  • Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201

    Article  CAS  Google Scholar 

  • Jackson DA, Symonst RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909

    Article  CAS  Google Scholar 

  • Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13:484–493

    Article  CAS  Google Scholar 

  • Jeong S (2017) SR proteins : binders, regulators, and connectors of RNA. Mol Cells 40:1–9

    Article  CAS  Google Scholar 

  • Katahira J (2012) mRNA export and the TREX complex. Biochim Biophys Acta 819:507–513

    Article  Google Scholar 

  • KÄ™dzierska H, PiekieÅ‚ko-Witkowska A (2017) Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 396:53–65

    Article  Google Scholar 

  • Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3:257–263

    PubMed  PubMed Central  Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16

    Article  Google Scholar 

  • Köhler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773

    Article  Google Scholar 

  • Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ (2013) Alternative splicing : a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–166

    Article  CAS  Google Scholar 

  • Koyama M, Matsuura Y (2012) Mechanistic insights from the recent structures of the CRM1 nuclear export complex and its disassembly intermediate. Biophysics 8:145–150

    Article  CAS  Google Scholar 

  • Kurian KM, Watson CJ, Wyllie AH, Currie SA (2000) Retroviral vectors. Mol Pathol 53:173–176

    Article  CAS  Google Scholar 

  • Labow MA, Baim SB, Shenk T, Levine AJ (1990) Conversion of the lac repressor into an allosterically regulated transcriptional activator for mammalian cells. Mol Cell Biol 10:3343–3356

    Article  CAS  Google Scholar 

  • Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323

    Article  CAS  Google Scholar 

  • Li M, Husic N, Lin Y, Christensen H, Malik I, McIver S, LaPash Daniels CM, Harris DA, Kotzbauer PT, Goldberg MP, Snider BJ (2011) Optimal promoter usage for lentiviral vector-mediated transduction of cultured central nervous system cells. J Neurosci Methods 189:56–64

    Article  Google Scholar 

  • Li M, Husic N, Lin Y, Snider BJ (2012) Production of lentiviral vectors for transducing cells from the central nervous system. J Vis Exp 24:E4031

    Google Scholar 

  • Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 110:5004–5009

    Article  CAS  Google Scholar 

  • Mamon LA, Ginanova VR, Kliver SF, Yakimova AO, Atsapkina AA, Golubkova EV (2017) RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton (Hoboken) 74:161–169

    Article  CAS  Google Scholar 

  • Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19:1512–1517

    Article  CAS  Google Scholar 

  • McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8:1248–1254

    Article  CAS  Google Scholar 

  • McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10:2112–2118

    Article  CAS  Google Scholar 

  • Mikami S, Masutani M, Sonenberg N, Yokoyama S, Imataka H (2006) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 46:348–357

    Article  CAS  Google Scholar 

  • Müller-Mcnicoll M, Botti V, Domingues AMDJ, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM (2016) SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 30:553–566

    Article  Google Scholar 

  • Nielsen J (2013) Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered 4:207–211

    Article  Google Scholar 

  • Okamura M, Inose H, Masuda S (2015) RNA export through the NPC in eukaryotes. Genes 6:124–149

    Article  CAS  Google Scholar 

  • Onion D, Crompton LJ, Milligan DW, Moss PA, Lee SP, Mautner V (2007) The CD4+ T-cell response to adenovirus is focused against conserved residues within the hexon protein. J General Virol 88:2417–2425

    Article  CAS  Google Scholar 

  • Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:14

    Article  Google Scholar 

  • Pasquinelli AE, Ernst RK, Lund E, Grimm C, Zapp ML, Rekosh D, Hammarskjöld M, Dahlberg JE (1997) The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J 16:7500–7510

    Article  CAS  Google Scholar 

  • Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5:e10611

    Article  Google Scholar 

  • Quitschkes WW, Lin Z, Deponti-Zilli L, Paterson BM, Tris M (1989) The beta actin promoter. J Biol Chem 264:9539–9546

    Google Scholar 

  • Raj B, Blencowe BJ (2015) Alternative splicing in the mammalian nervous system : recent insights into mechanisms and functional roles. Neuron 87:14–27

    Article  CAS  Google Scholar 

  • Reed R (2003) Coupling transcription, splicing and mRNA export. Curr Opin Cell Biol 15:326–331

    Article  CAS  Google Scholar 

  • Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17:269–273

    Article  CAS  Google Scholar 

  • Rosenblum G, Cooperman BS (2014) Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 588:261–268

    Article  CAS  Google Scholar 

  • Roy B, Haupt LM, Griffiths LR (2013) Alternative splicing (AS) of genes as an approach for generating protein complexity. Curr Genomics 14:182–194

    Article  CAS  Google Scholar 

  • Sandri-goldin RM (2004) Viral regulation of mRNA export. J Virol 78:4389–4396

    Article  CAS  Google Scholar 

  • Schagen FH, Rademaker HJ, Fallaux FJ, Hoeben RC (2000) Insertion vectors for gene therapy. Gene Ther 7:271–272

    Article  CAS  Google Scholar 

  • Schorpp M, Jäger R, Schellander K, Schenkel J, Wagner EF, Weiher H, Angel P (1996) The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 24:1787–1788

    Article  CAS  Google Scholar 

  • Shao WY, Yang YL, Yan H, Huang Q, Liu KJ, Zhang S (2017) Phenethyl isothiocyanate suppresses the metastasis of ovarian cancer associated with the inhibition of CRM1-mediated nuclear export and mTOR-STAT3 pathway. Cancer Biol Ther 18:26–35

    Article  CAS  Google Scholar 

  • Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondón AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308

    Article  Google Scholar 

  • Tabernero C, Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK (1996) The posttranscriptional control element of the simian retrovirus type 1 forms an extensive RNA secondary structure necessary for its function. J Virol 70:5998–6011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032

    Article  CAS  Google Scholar 

  • Turner JG, Dawson J, Cubitt CL, Baz R, Sullivan DM (2014) Inhibition of CRM1-dependent nuclear export sensitizes malignant cells to cytotoxic and targeted agents. Semin Cancer Biol 27:62–73

    Article  CAS  Google Scholar 

  • Varela-Echavarría A, Prorock CM, Ron Y, Dougherty JP (1993) High rate of genetic rearrangement during replication of a Moloney murine leukemia virus-based vector. J Virol 67:6357–6364

    PubMed  PubMed Central  Google Scholar 

  • Wickramasinghe VO, Laskey RA (2015) Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 16:431–442

    Article  CAS  Google Scholar 

  • Wiegand HL, Coburn GA, Zeng Y, Kang Y, Bogerd HP, Cullen BR (2002) Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol 22:245–256

    Article  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Xu L, Daly T, Gao C, Flotte TR, Song S, Byrne BJ, Sands MS, Parker Ponder K (2001) CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Human Gene Ther 12:563–573

    Google Scholar 

  • Zhou S, Mody D, DeRavin SS, Hauer J, Lu T, Ma Z, Abina SH, Gray JT, Greene MR, Cavazzana-Calvo M, Malech HL, Sorrentino BP (2010) A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood 116:900–908

    Article  Google Scholar 

  • Zolotukhin S, Michalowski D, Smulevitch S, Felber BK (2001) Retroviral constitutive transport element evolved from cellular TAP(NXF1)-binding sequences. J Virol 75:5567–5575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Lwando Moshani from Kyoto Seika University, Japan, for creating some of the drawings for this book chapter. This work was partially supported by JSPS KAKENHI Grant Number 17K19232 to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mursi, I.F.A., Masuda, S. (2018). The Production of Recombinant Proteins from Mammalian Cells Using RNA Element. In: Masuda, S., Izawa, S. (eds) Applied RNA Bioscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-8372-3_9

Download citation

Publish with us

Policies and ethics