Skip to main content

Constructing Mutant Ribosomes Containing Mutant Ribosomal RNAs

  • Chapter
  • First Online:
Applied RNA Bioscience
  • 937 Accesses

Abstract

The ribosome is the factory for protein biosynthesis, consisting of 3 different ribosomal RNA (rRNA) molecules (16S, 23S, and 5S rRNAs in prokaryotes) and more than 50 different ribosomal proteins. Because almost all organisms have multiple operons for rRNA genes (rrn operons), mutational analysis of ribosomes has inevitable technical difficulties, particularly for analyzing the functions of the 16S and 23S rRNAs, which form part of the core structure for the small (30S) and large (50S) subunits, respectively. In this chapter, we introduce six major strategies that allow researchers to perform mutational studies of the prokaryotic ribosome, particularly by focusing on the analysis of the 16S and 23S rRNA molecules. Although conventional mutational studies allow only for a small number of nucleotide changes simultaneously, recent approach developed by our group circumvents this problem in the Escherichia coli 16S rRNA gene, allowing for changes of up to 20% of the total nucleotides by interspecies exchange of the gene with that from foreign (non-E. coli) bacteria. The outcome of this novel technique has led to the discovery of an unexpected, nontranslational function (ribonuclease inhibitor) in the 16S rRNA molecule. The introduction of such a large sequence perturbation into the central core of the ribosome will open up a new era of ribosomal engineering to create highly functional ribosomes or phenotypic improvements of the host cell, which would be advantageous for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V (2015) Ribosome. The structure of the human mitochondrial ribosome. Science 348:95–98

    Article  CAS  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A 96:1971–1976

    Article  CAS  Google Scholar 

  • Baker KA, Lamichhane R, Lamichhane T, Rueda D, Cunningham PR (2016) Protein-RNA dynamics in the central junction control 30S ribosome assembly. J Mol Biol 428:3615–3631

    Article  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  Google Scholar 

  • Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334:1524–1529

    Article  CAS  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981a) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  CAS  Google Scholar 

  • Brosius J, Ullrich A, Raker MA, Gray A, Dull TJ, Gutell RR, Noller HF (1981b) Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6:112–118

    Article  CAS  Google Scholar 

  • Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SH, Ramakrishnan V (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346:718–722

    Article  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    Article  Google Scholar 

  • Clemons WM Jr, May JL, Wimberly BT, Mccutcheon JP, Capel MS, Ramakrishnan V (1999) Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 400:833–840

    Article  CAS  Google Scholar 

  • Davis JH, Williamson JR (2017) Structure and dynamics of bacterial ribosome biogenesis. Philos Trans R Soc Lond Ser B Biol Sci 372:pii: 20160181

    Article  Google Scholar 

  • Englander MT, Avins JL, Fleisher RC, Liu B, Effraim PR, Wang J, Schulten K, Leyh TS, Gonzalez RL Jr, Cornish VW (2015) The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Proc Natl Acad Sci U S A 112:6038–6043

    Article  CAS  Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    Article  Google Scholar 

  • Frank J (2017) The mechanism of translation. F1000Res 6:198

    Article  Google Scholar 

  • Fried SD, Schmied WH, Uttamapinant C, Chin JW (2015) Ribosome subunit stapling for orthogonal translation in E. coli. Angew Chem Int Ed 54:12791–12794

    Article  CAS  Google Scholar 

  • Golovina AY, Bogdanov AA, Dontsova OA, Sergiev PV (2010) Purification of 30S ribosomal subunit by streptavidin affinity chromatography. Biochimie 92:914–917

    Article  CAS  Google Scholar 

  • Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N (2014) The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515:283–286

    Article  CAS  Google Scholar 

  • Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348:303–308

    Article  CAS  Google Scholar 

  • Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679–716

    Article  CAS  Google Scholar 

  • Gupta N, Culver GM (2014) Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 21:937–943

    Article  CAS  Google Scholar 

  • Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688

    Article  CAS  Google Scholar 

  • Jewett MC, Fritz BR, Timmerman LE, Church GM (2013) In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation. Mol Syst Biol 9:678

    Article  CAS  Google Scholar 

  • Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 111:7284–7289

    Article  CAS  Google Scholar 

  • Kaushal PS, Sharma MR, Agrawal RK (2015) The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie 114:119–126

    Article  CAS  Google Scholar 

  • Kitahara K, Miyazaki K (2011) Specific inhibition of bacterial RNase T2 by helix 41 of 16S ribosomal RNA. Nat Commun 2:549

    Article  Google Scholar 

  • Kitahara K, Miyazaki K (2014) Revisiting bacterial phylogeny. Mob Genet Elem 3(1):e24210

    Article  Google Scholar 

  • Kitahara K, Suzuki T (2009) The ordered transcription of RNA domains is not essential for ribosome biogenesis in Escherichia coli. Mol Cell 34:760–766

    Article  CAS  Google Scholar 

  • Kitahara K, Kajiura A, Sato NS, Suzuki T (2007) Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2. Nucleic Acids Res 35:4018–4029

    Article  CAS  Google Scholar 

  • Kitahara K, Yasutake Y, Miyazaki K (2012) Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proc Natl Acad Sci U S A 109:19220–19225

    Article  CAS  Google Scholar 

  • Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–948

    Article  CAS  Google Scholar 

  • Kloss P, Xiong L, Shinabarger DL, Mankin AS (1999) Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J Mol Biol 294:93–101

    Article  CAS  Google Scholar 

  • Klumpp S, Scott M, Pedersen S, Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci U S A 110:16754–16759

    Article  CAS  Google Scholar 

  • Laios E, Waddington M, Saraiya AA, Baker KA, O’Connor E, Pamarathy D, Cunningham PR (2004) Combinatorial genetic technology for the development of new anti-infectives. Arch Pathol Lab Med 128:1351–1359

    CAS  PubMed  Google Scholar 

  • Lee K, Holland-Staley CA, Cunningham PR (1996) Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2:1270–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leviev IG, Rodriguez-Fonseca C, Phan H, Garrett RA, Heilek G, Noller HF, Mankin AS (1994) A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation. EMBO J 13:1682–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    Article  CAS  Google Scholar 

  • Miyazaki K, Sato M, Tsukuda M (2017) PCR primer design for 16S rRNAs for experimental horizontal gene transfer test in Escherichia coli. Front Bioeng Biotechnol 5:14

    Article  Google Scholar 

  • Moine H, Squires CL, Ehresmann B, Ehresmann C (2000) In vivo selection of functional ribosomes with variations in the rRNA-binding site of Escherichia coli ribosomal protein S8: evolutionary implications. Proc Natl Acad Sci U S A 97:605–610

    Article  CAS  Google Scholar 

  • Moore PB, Steitz TA (2002) The involvement of RNA in ribosome function. Nature 418:229–235

    Article  CAS  Google Scholar 

  • Morosyuk SV, Santalucia J Jr, Cunningham PR (2001) Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. III. Functional analysis of the 690 loop. J Mol Biol 307:213–228

    Article  CAS  Google Scholar 

  • Neidhardt FC (1987) Escherichia coli and Salmonella typhimurium, cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Nierhaus KH, Dohme F (1974) Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A 71:4713–4717

    Article  CAS  Google Scholar 

  • Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH (2015) High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22:336–341

    Article  CAS  Google Scholar 

  • Nomura M (1999) Engineering of bacterial ribosomes: replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. Proc Natl Acad Sci U S A 96:1820–1822

    Article  CAS  Google Scholar 

  • Oakes M, Aris JP, Brockenbrough JS, Wai H, Vu L, Nomura M (1998) Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 143:23–34

    Article  CAS  Google Scholar 

  • Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS (2015) Protein synthesis by ribosomes with tethered subunits. Nature 524:119–124

    Article  CAS  Google Scholar 

  • Ott M, Amunts A, Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85:77–101

    Article  CAS  Google Scholar 

  • Quan S, Skovgaard O, Mclaughlin RE, Buurman ET, Squires CL (2015) Markerless Escherichia coli rrn deletion strains for genetic determination of ribosomal binding sites. G3 5:2555–2557

    Article  CAS  Google Scholar 

  • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–736

    Article  CAS  Google Scholar 

  • Rackham O, Chin JW (2005) A network of orthogonal ribosome x mRNA pairs. Nat Chem Biol 1:159–166

    Article  CAS  Google Scholar 

  • Rakauskaite R, Dinman JD (2008) rRNA mutants in the yeast peptidyltransferase center reveal allosteric information networks and mechanisms of drug resistance. Nucleic Acids Res 36:1497–1507

    Article  CAS  Google Scholar 

  • Ramakrishnan V (2014) The ribosome emerges from a black box. Cell 159:979–984

    Article  CAS  Google Scholar 

  • Rodnina MV (2013) The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Curr Opin Struct Biol 23:595–602

    Article  CAS  Google Scholar 

  • Saraiya AA, Lamichhane TN, Chow CS, Santalucia J Jr, Cunningham PR (2008) Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J Mol Biol 376:645–657

    Article  CAS  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–623

    Article  CAS  Google Scholar 

  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821

    Article  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–1242

    Article  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  CAS  Google Scholar 

  • Shajani Z, Sykes MT, Williamson JR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80:501–526

    Article  CAS  Google Scholar 

  • Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Article  CAS  Google Scholar 

  • Terasaka N, Hayashi G, Katoh T, Suga H (2014) An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat Chem Biol 10:555–557

    Article  CAS  Google Scholar 

  • Tocilj A, Schlünzen F, Janell D, Glühmann M, Hansen HA, Harms J, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (1999) The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci U S A 96:14252–14257

    Article  CAS  Google Scholar 

  • Traub P, Nomura M (1968) Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A 59:777–784

    Article  CAS  Google Scholar 

  • Tsukuda M, Nakashima N, Miyazaki K (2015) Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli. J Biosci Bioeng 120:591–595

    Article  CAS  Google Scholar 

  • Tsukuda M, Kitahara K, Miyazaki K (2017) Comparative RNA function analysis reveals high functional similarity between distantly related bacterial 16 S rRNAs. Sci Rep 7(1):9993

    Google Scholar 

  • Voorhees RM, Ramakrishnan V (2013) Structural basis of the translational elongation cycle. Annu Rev Biochem 82:203–236

    Article  CAS  Google Scholar 

  • Wang K, Neumann H, Peak-Chew SY, Chin JW (2007) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25:770–777

    Article  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  Google Scholar 

  • Yano K, Masuda K, Akanuma G, Wada T, Matsumoto T, Shiwa Y, Ishige T, Yoshikawa H, Niki H, Inaoka T, Kawamura F (2015) Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon. Microbiology 162:35–45

    PubMed  Google Scholar 

  • Yusupova G, Yusupov M (2014) High-resolution structure of the eukaryotic 80S ribosome. Annu Rev Biochem 83:467–486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitahara, K., Miyazaki, K. (2018). Constructing Mutant Ribosomes Containing Mutant Ribosomal RNAs. In: Masuda, S., Izawa, S. (eds) Applied RNA Bioscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-8372-3_2

Download citation

Publish with us

Policies and ethics