Skip to main content

Application of Systemic Transcriptional Gene Silencing for Plant Breeding

  • Chapter
  • First Online:
Applied RNA Bioscience

Abstract

Small interfering RNA (siRNA)-mediated gene silencing has been observed in eukaryotes across all kingdoms from fungi to mammals. In plants, this phenomenon influences resistance to pathogenic viruses, suppression of transgene expression, and the inactivation of transposable elements. Recent studies have revealed that double-stranded RNA-derived siRNAs are able to induce systemic transcriptional gene silencing (TGS) in graft partners. In particular, when the scion is used as the siRNA donor, the roots exhibit strong systemic TGS, especially the lateral roots. Such gene silencing can be maintained through in vitro regeneration and is heritable. We developed a novel method for transforming plants using this process. The expression of the target gene can be arrested without inserting exogenous DNA into the genome of the target organism. We herein review the recent advances in research related to systemic TGS. We also describe the potential utility of systemic TGS for plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison R, Thompson C, Ahlquist P (1990) Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci 87:1820–1824

    Article  CAS  Google Scholar 

  • Aloni B, Karni L, Deventurero G, Levin Z, Cohen R, Katzir N, Lotan-Pompan M, Edelstein M, Aktas H, Turhan E, Joel DM, Horev C, Kapulnik Y (2008) Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. J Hortic Sci Biotechnol 83:777–783

    Article  Google Scholar 

  • Axtell M, Merchant S (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  Google Scholar 

  • Bai S, Kasai A, Yamada K, Li T, Harada T (2011) A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J Exp Bot 62:4561–4570

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  Google Scholar 

  • Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  CAS  Google Scholar 

  • Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, Tang H, Pikaard CS (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54:30–42

    Article  CAS  Google Scholar 

  • Bond DM, Baulcombe DC (2015) Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:917–922

    Article  CAS  Google Scholar 

  • Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A 104:14741–14746

    Article  CAS  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    Article  CAS  Google Scholar 

  • Covey SN, Al-Kaff NS, Lángara A, Turner DS (1997) Plants combat infection by gene silencing. Nature 385:781–782

    Article  CAS  Google Scholar 

  • Cutting JGM, Lyne MC (1993) Girdling and the reduction in Shoot Xylem Sap concentrations of Cytokinins and Gibberellins in Peach. J Hortic Sci 68:619–626

    Article  CAS  Google Scholar 

  • Daxinger L, Kanno T, Bucher E, van der Winden J, Naumann U, Matzke AJM, Matzke M (2009) A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 28:48–57

    Article  CAS  Google Scholar 

  • De Smet I (2011) Lateral root initiation: one step at a time. New Phytol 193:867–873

    Article  Google Scholar 

  • Fei Q, Xia R, Meyers B (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415

    Article  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  • Gohlke J, Mosher RA (2015) Exploiting mobile RNA silencing for crop improvement. Am J Bot 102:1399–1400

    Article  CAS  Google Scholar 

  • Goldschmidt EE (2014) Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci 5:727

    Article  Google Scholar 

  • Guo S, Kemphues KJ (1995) Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  Google Scholar 

  • Han X, Kumar D, Chen H, Wu S, Kim JY (2014) Transcription factor-mediated cell-to-cell signalling in plants. J Exp Bot 65:1737–1749

    Article  CAS  Google Scholar 

  • Hannapel DJ, Sharma P, Lin T (2013) Phloem-mobile messenger RNAs and root development. Front Plant Sci 4:257

    PubMed  PubMed Central  Google Scholar 

  • Harada T (2010) Grafting and RNA transport via phloem tissue in horticultural plants. Sci Hortic 125:545–550

    Article  CAS  Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Bennett AB (2012) Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J Biotechnol 161:349–353

    Article  CAS  Google Scholar 

  • Heap B (2013) Europe should rethink its stance on GM crops. Nature 498:409–409

    Article  CAS  Google Scholar 

  • Heilersig BHJB, Loonen AEHM, Janssen EM, Wolters A-MA, Visser RGF (2006) Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat. Mol Gen Genomics 275:437–449

    Article  CAS  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  CAS  Google Scholar 

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    Article  CAS  Google Scholar 

  • Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Article  CAS  Google Scholar 

  • Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26

    Article  CAS  Google Scholar 

  • Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C (2011) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J 65:156–168

    Article  CAS  Google Scholar 

  • Kasai A, Bai S, Hojo H, Harada T (2016) Epigenome editing of potato by grafting using transgenic tobacco as siRNA donor. PLoS One 11:e0161729

    Article  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  Google Scholar 

  • Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR (2016) Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acad Sci U S A 113:E801–E810

    Article  CAS  Google Scholar 

  • Liang DC, White RG, Waterhouse PM (2012) Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol 159:984–1000

    Article  CAS  Google Scholar 

  • Lloret P, Casero P (2002) Lateral root initiation. In: Plant roots. CRC Press, Boca Raton, pp 127–155. https://doi.org/10.1201/9780203909423.ch8

    Chapter  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  CAS  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  Google Scholar 

  • Mark Cigan A, Unger-Wallace E, Haug-Collet K (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J 43:929–940

    Article  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  CAS  Google Scholar 

  • Matsuda Y, Liang G, Zhu Y, Ma F, Nelson RS, Ding B (2002) The Commelina yellow mottle virus promoter drives companion-cell-specific gene expression in multiple organs of transgenic tobacco. Protoplasma 220:51–58

    Article  CAS  Google Scholar 

  • Melnyk CW, Molnar A, Bassett A, Baulcombe DC (2011a) Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 21:1678–1683

    Article  CAS  Google Scholar 

  • Melnyk CW, Molnar A, Baulcombe DC (2011b) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563

    Article  CAS  Google Scholar 

  • Mermigka G, Verret F, Kalantidis K (2016) RNA silencing movement in plants. J Integr Plant Biol 58:328–342

    Article  CAS  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  CAS  Google Scholar 

  • Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Ding SW, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. Plant Cell 14:S289–S301

    Article  CAS  Google Scholar 

  • Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  CAS  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–U1115

    Article  CAS  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  Google Scholar 

  • Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225:365–379

    Article  CAS  Google Scholar 

  • Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. Hortic Rev 35:437–493. https://doi.org/10.1002/9780470593776.ch9

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  Google Scholar 

  • Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hortic 106:1–11

    Article  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937

    Article  CAS  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  CAS  Google Scholar 

  • Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JNM, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11:436–440

    Article  CAS  Google Scholar 

  • Song XW, Li PC, Zhai JX, Zhou M, Ma LJ, Liu B, Jeong DH, Nakano M, Cao SY, Liu CY, Chu CC, Wang XJ, Green PJ, Meyers BC, Cao XF (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69:462–474

    Article  CAS  Google Scholar 

  • Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Wang G-L, Meyers BC, Jacobsen SE (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2

    Google Scholar 

  • Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang WN, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F (2016) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 2:15025

    Google Scholar 

  • Tournier B, Tabler M, Kalantidis K (2006) Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47:383–394

    Article  CAS  Google Scholar 

  • Vaistij FE, Jones L (2009) Compromised virus-induced gene silencing in RDR6-deficient plants. Plant Physiol 149:1399–1407

    Article  CAS  Google Scholar 

  • Van der krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia – addition of a limited number of gene copies may lead to a suppression of gene-expression. Plant Cell 2:291–299

    Article  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A, Hilbert J, Bartel D, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  CAS  Google Scholar 

  • Vining K, Pomraning KR, Wilhelm LJ, Ma C, Pellegrini M, Di YM, Mockler TC, Freitag M, Strauss SH (2013) Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa. BMC Plant Biol 13:92

    Article  CAS  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  Google Scholar 

  • Wu L, Mao L, Qi Y (2012) Roles of DICER-LIKE and ARGONAUTE proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160:990–999

    Article  CAS  Google Scholar 

  • Wu R, Wang X, Lin Y, Ma Y, Liu G, Yu X, Zhong S, Liu B (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS One 8:e61995

    Article  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  Google Scholar 

  • Zhang W, Kollwig G, Stecyk E, Apelt F, Dirks R, Kragler F (2014) Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers. Plant J 80:106–121

    Article  CAS  Google Scholar 

  • Zhong XH, Du JM, Hale CJ, Gallego-Bartolome J, Feng SH, Vashisht AA, Chory J, Wohlschlegel JA, Patel DJ, Jacobsen SE (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157:1050–1060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songling Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, S., Harada, T., Kasai, A. (2018). Application of Systemic Transcriptional Gene Silencing for Plant Breeding. In: Masuda, S., Izawa, S. (eds) Applied RNA Bioscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-8372-3_15

Download citation

Publish with us

Policies and ethics