Skip to main content

Algal Blooms: Potential Drivers, Occurrences and Impact

  • Chapter
  • First Online:
Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts

Abstract

The growth of marine phytoplankton (both non-toxic and toxic) is generally limited by the availability of nitrates and phosphates, which can be abundant in coastal upwelling zones as well as in agricultural runoff. The type of nitrates and phosphates available in the system is also a factor, since phytoplankton can grow at different rates depending on the relative abundance of these substances (e.g. ammonia, urea, nitrate ion). A variety of other nutrient sources can also play an important role in affecting algal bloom formation, including iron, silica or carbon. This chapter has given importance to gain insight into the characteristics of algal blooms along with their potential drivers in relation to the marine environment. The chapter has also highlighted the current understanding on the mechanisms of algal bloom and addresses the regional differences in the persistence and causative agents of algal bloom in eutrophic tropical aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhavan, D., Kamboj, R. D., Chavdaand, D. V., & Bhalodi, M. M. (2014a). Status of intertidal biodiversity of Narara Reef Marine National Park, Gulf of Kachchh, Gujarat. Journal of Marine Biology and Oceanography, 3(3), 2.

    Google Scholar 

  • Adhavan, D., Kamboj, R. D., Marimuthu, N., et al. (2014b). Seasonal variation and climate change influence coral bleaching in Pirotan Island, Gulf of Kachchh Marine National Park, Gujarat. Currrent Science, 107(11), 1780–1781.

    Google Scholar 

  • Adhikary, S. P., & Sahu, J. (1992). Studies on the Trichodesmium bloom of Chilka Lake, East Coast of India. Phykos, 30, 101–107.

    Google Scholar 

  • Ahmed, S., Arakawa, O., & Onoue, Y. (1995). Toxicity of cultured Chattonella marina. In P. Lassus, G. Arzul, E. Erad, P. Geniten, & C. Marciallou (Eds.), Harmful algal blooms (pp. 499–504). Paris: Techinique at documentation-Lavoiser Intercept Ltd.

    Google Scholar 

  • Alagaraja, K., Kurup, K. N., Srinath, M., & Balakrishnan, G. (1992). Analysis of marine landings in India- a new approach (CMFRI Special Publication, Vol. 10, p. 42). Cochin: Central Marine Fisheries Research Institute.

    Google Scholar 

  • Al-Azri, A., Al-Hashmi, K., Goes, J., Gomes, H., Rushdi, A. I., Al-Habsi, H., et al. (2007). Seasonality of the bloom-forming heterotrophic dinoflagellate Noctiluca scintillans in the Gulf of Oman in relation to environmental conditions. International Journal of Oceans and Oceanography, 2(1), 51–60.

    Google Scholar 

  • Allen, J. I., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Glibert, P. M., Granéli, E., Heil, C., Sellner, K., Smayda, T., & Zhou, M. (2006). Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems (P. Glibert, Ed., GEOHAB report 4, p. 74). Paris/Baltimore: IOC and SCOR.

    Google Scholar 

  • Anas, A., Sheeba, V. A., Jasmin, C., Gireeshkumar, T. R., Mathew, D., Krishna, K., Nair, S., Muraleedharan, K. R., & Jayalakshmy, K. V. (2018). Upwelling induced changes in the abundance and community structure of archaea and bacteria in a recurring mud bank along the southwest coast of India. Regional Studies in Marine Science, 18, 113–121.

    Article  Google Scholar 

  • Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.

    Article  Google Scholar 

  • Archer, S. D., Widdicombe, C. E., Tarran, G. A., Rees, A. P., & Burkill, P. H. (2001). Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea. Aquatic Microbial Ecology, 24(3), 225–241.

    Article  Google Scholar 

  • Arhonditsis, G., Tsirtsis, G., & Karydis, M. (2002). The effects of episodic rainfall events to the dynamics of coastal marine ecosystems: Applications to a semi-enclosed gulf in the Mediterranean Sea. Journal of Marine Systems, 35, 183–205.

    Article  Google Scholar 

  • Arun Kumar, M., Karthik, R., Sai Elangovan, S., & Padmavati, G. (2012). Occurrence of Trichodesmium erythraeum bloom in the coastal waters of south Andaman. International Journal of Current Research, 11, 281–284.

    Google Scholar 

  • Arun Kumar, M., Padmavati, G., & Pradeep, H. D. (2015). Occurrence of Trichodesmium erythraeum (Cyanophyte) bloom and its effects on the fish catch during April 2013, in the Andaman Sea. Applied Environmental Research, 37, 49–57.

    Google Scholar 

  • Barría de Cao, M. S., Beight, M., & Piccolo, C. (2005). Temporal variability of diversity and biomass of tintinnids (Ciliophora) in Southeastern Atlantic temperate estuary. Journal of Plankton Research, 27(11), 1103–1111.

    Article  Google Scholar 

  • Begum, M., Sahu, B. K., Das, A. K., Vinithkumar, N. V., & Kirubagaran, R. (2015). Extensive Chaetocero scurvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands. Environmental Monitoring and Assessment, 187, 1–14.

    Article  Google Scholar 

  • Bhat, S. R., & Verlencar, X. N. (2006). Some enigmatic aspects of marine cyanobacterial genus, Trichodesmium. Current Science, 91, 18–19.

    Google Scholar 

  • Bhimachar, B. S., & George, P. C. (1950). Abrupt setback in the fisheries of the Malabar and Kanara coasts and red water phenomenon and their probable cause. Proceedings of the Indian Academy of Sciences, 31, 339–350.

    Google Scholar 

  • Biswas, S. N., Godhantaraman, N., Sarangi, R. K., Bhattacharya, B. D., Sarkar, S. K., & Satpathy, K. K. (2013). Bloom of Hemidiscus hardmannianus (Bacillariophyceae) and its impact on water quality and plankton community structure in a mangrove wetland. Clean – Soil, Air, Water, 41(4), 333–339.

    Article  Google Scholar 

  • Biswas, S. N., Rakshit, D., Sarkar, S. K., Sarangi, R. K., & Satpathy, K. K. (2014). Impact of multispecies diatom bloom on plankton community structure in Sundarban mangrove wetland, India. Marine Pollution Bulletin, 85, 306–311.

    Article  Google Scholar 

  • Blackburn, S. I., McCausland, M. A., Bolch, C. J. S., Newman, S. J., & Jones, G. J. (1996). Effect of salinity on growth and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigera from Australian waters. Phycologia, 36(6), 511–522.

    Article  Google Scholar 

  • Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., et al. (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2979–2989.

    Article  Google Scholar 

  • Bopp, L., Aumont, O., Belviso, S., & Monfray, P. (2003). Potential impact of climate change on marine dimethyl sulfide emissions. Tellus, 55B, 11–22.

    Article  Google Scholar 

  • Cameron-Smith, P., Elliott, S., Maltrud, M., Erickson, D., & Wingenter, O. (2011). Changes in dimethyl sulfide oceanic distribution due to climate change. Geophysical Research Letters, 38, L07704.

    Article  Google Scholar 

  • Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium, a globally significant marine bacteria. Science, 276, 1221–1229.

    Article  Google Scholar 

  • Carmichael, W. W. (1992). Cyanobacterial secondary metabolites – The cyanotoxins. The Journal of Applied Bacteriology, 724, 45–459.

    Google Scholar 

  • Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., & Kulmala, M. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.

    Article  Google Scholar 

  • Chacko, P. I. (1942). An unusual incidence of mortality of marine fauna. Current Science, 11, 404.

    Google Scholar 

  • Chang, J., Chiang, K. P., & Gong, G. C. (2000). Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in the southern East China Sea. Continental Shelf Research, 20, 479–492.

    Article  Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreaei, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud. Nature, 326(6114), 655–661.

    Article  Google Scholar 

  • Chellappa, S. I., Marinho, I. R., & Chellappa, N. T. (2004). Freshwater phytoplankton assemblages and the bloom of toxic Cyanophyceae of Campo Grande reservoir of Rio Grande do Norte State of Brazil. Indian Hydrobiology, 7, 151–171.

    Google Scholar 

  • Chidambaram, K., & Menon, K. (1945). Correlation of the west coast (Malabar and South Kanara) fisheries with plankton and certain oceanographical features. Proceedings of the Indian Academy of Sciences, 31, 252–286.

    Google Scholar 

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in monitoring and management. E and FN Spon (416 pp). London: An Imprint of Routledge.

    Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (1998). Quantifying structural redundancy in ecological communities. Oecologia, 113(2), 278–289.

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd ed.p. 171). Plymouth: PRIMER-E.

    Google Scholar 

  • D’Silva, M. S., Anil, A. C., Naik, R. K., & D’Costa, P. M. (2012). Algal blooms: A perspective from the coasts of India. Natural Hazards, 63, 1225–1253.

    Article  Google Scholar 

  • Davidson, K., Miller, P., Wilding, T. A., Shutler, J., Bresnan, E., Kennington, K., & Swan, S. (2009). A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006. Harmful Algae, 8, 349–361.

    Article  Google Scholar 

  • Devassy, V. P. (1987). Trichodesmium red tides in the Arabian Sea. In T. S. S. Rao (Ed.), Contributions in marine sciences: A special volume to felicitate Dr. S. Z. Qasim Sastyabdapurtl on his sixtieth birthday (pp. 61–66). Dona Paula: National Institute of Oceanography.

    Google Scholar 

  • Devassy, V. P., & Nair, S. R. S. (1987). Discolouration of waters and its effect on fisheries along the Goa coast. Mahasagar, 20, 121.

    Google Scholar 

  • Devassy, V. P., Bhatrarhiri, P. M. A., & Qasim, S. Z. (1978). Trichodesmium phenomenon. Indian Journal of Marine Science, 73, 168–186.

    Google Scholar 

  • Dharani, G., Abdul Nazar, A., Kanagu, L., Venkateshwaran, P., Kumar, T., Ratnam, K., Venkatesan, R., & Ravindran, M. (2004). On the recurrence of Noctiluca scintillans  bloom in Minnie Bay, Port Blair: Impact on water quality and bioactivity of extracts. Current Science, 87, 990–994.

    Google Scholar 

  • Dippner, J. W., Nguyen-Ngoc, L., Doan-Nhu, H., & Subramaniam, A. (2011). A model for the prediction of harmful algae blooms in the Vietnamese upwelling area. Harmful Algae, 10(6), 606–611.

    Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192.

    Article  Google Scholar 

  • Duguay, L. E., Monteleone, D. M., & Monteleone, C. E. (1989). Abundance and distribution of zooplankton and Ichthyoplankton in Great South Bay, New York: During the brown tide outbreaks of 1985 and 1986. In E. M. Cosper, V. M. Bricelj, & E. J. Carpenter (Eds.), Novel phytoplankton blooms (pp. 600–623). Berlin: Springer.

    Google Scholar 

  • Dwivedi, R. M., Chauhan, R., Solanki, H. U., Raman, M., Matondkar, S. G. P., Madhu, V., & Meenakumari, B. (2012). Study of ecological consequence of the bloom (Noctiluca miliaris) in off shore waters of the Northern Arabian Sea. Indian Journal of Geo Marine Sciences, 41(4), 304–313.

    Google Scholar 

  • Eashwar, M., Nallathambi, T., Kuberaraj, K., & Govindarajan, G. (2001). Noctiluca blooms in Port Blair Bay, Andamans. Arya, 1105, 1–10.

    Google Scholar 

  • Elangovan, S. S., Arun Kumar, M., Karthik, R., Siva Sankar, R., Jayabarathi, R., & Padmavati, G. (2012). Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island. Aquatic Biosystems, 8, 20.

    Article  Google Scholar 

  • Elbrächter, M. & Qi, Y. Z. (1998). Aspects of Noctiluca (Dinophyceae) population dynamics. In D. M. Anderson et al.(Eds.), Physiological ecology of harmful algal blooms (NATO ASI Series, Vol. G41, pp. 315–335). Berlin: Springer.

    Google Scholar 

  • Endo, M., Onoue, Y., & Kuroki, A. (1992). Neurotoxin induced disorder and its role in the death of fish exposed to Chattonella marina. Marine Biology, 112, 371–376.

    Article  Google Scholar 

  • Falconer, I. R., Burch, M. D., Steffensen, D. A., Choice, M., & Coverdale, O. R. (1994). Toxicity of the blue-green alga (cyanobacterium) Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment. Environmental Toxicology, 9(2), 131–139.

    Google Scholar 

  • Fay, P. (1983). The blue greens (Studies in biology N°160). London: Edward Arnold.

    Google Scholar 

  • Federico, A., Sarma, S. S. S., & Nandini, S. (2007). Effect of mixed diets (cyanobacteria and green algae) on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Aquatic Ecology, 41, 579–585.

    Article  Google Scholar 

  • Fei, H. (1952). The cause of red tides. Science and Art 22, 1–3 (in Chinese).

    Google Scholar 

  • Fernandes, L. F., Zehnder-Alves, L., & Bassfeld, J. C. (2001). The recently established diatom Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta) in Brazilian waters. I: Remarks on morphology and distribution. Phycological Research, 49, 89–96.

    Article  Google Scholar 

  • Fistarol, G. O., Legrand, C., & Granéli, E. (2005). Allelopathic effect on a nutrient-limited phytoplankton species. Aquatic Microbial Ecology, 41(2), 153–161.

    Article  Google Scholar 

  • Fitzgerald, S. A., & Steuer, J. J. (2005). Association of PCBs with live algae and total lipids in rivers. The Science of the Total Environment, 354, 60–74.

    Article  Google Scholar 

  • Gabric, A. J., Simó, R., Cropp, R. A., Hirst, A. C., & Dachs, J. (2004). Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochemical Cycles, 18, GB2014.

    Google Scholar 

  • Gayoso, A. M. (1999). Seasonal succession patterns of phytoplankton in the Bahía Blanca Estuary (Argentina). Botanica Marina, 42, 367–375.

    Article  Google Scholar 

  • Ghadouani, A., Pinel-Alloul, B. B., & Prepas, E. E. (2006). Could increase cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Canadian Journal of Fisheries and Aquatic Sciences, 63, 2308–2317.

    Article  Google Scholar 

  • Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18(2), 130–141.

    Google Scholar 

  • Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquatic Sciences, 69, 338–354.

    Article  Google Scholar 

  • Gosselin, S., Fortier, L., & Gagne, J. A. (1989). Vulnerability of marine fish larvae to the toxic dinoflagellate Protogonyaulax tamerensis. Marine Ecology Progress Series, 57, 1–10.

    Article  Google Scholar 

  • Granéli, E., & Hansen, P. J. (2006). Allelopathy in harmful algae: A mechanism to compete for resources? In E. Granéli & J. T. Turner (Eds.), Ecology of harmful algae (pp. 189–201). Berlin: Springer.

    Chapter  Google Scholar 

  • Granéli, E., Weberg, M., & Salomon, P. S. (2008). Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae, 8, 94–102.

    Article  Google Scholar 

  • Gypens, N., & Borges, A. V. (2014). Increase in dimethylsulfide (DMS) emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification. Frontiers in Marine Science, 1, 4.

    Article  Google Scholar 

  • Halegraeff, D. M., Anderson, A., Cembella, D., & Envlodsen, H. O.. (1995). Manual on harmful marine microalgae (IOC manuals and guides, Vol. 33, pp. 550). Rome: UNESCO.

    Google Scholar 

  • Hall, S. J., & Greenstreet, S. P. (1998). Taxonomic distinctness and diversity measures: Responses in fish communities. Marine Ecology Progress Series, 166, 227–229.

    Article  Google Scholar 

  • Hallegraeff, G., & Gollasch, S. (2006). Anthropogenic introductions of microalgae. In Ecology of harmful algae (pp. 379–390). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hobson, P., Burch, M., & Fallowfield, H. J. (1999). Effect of total dissolved solids and irradiance on growth and toxin production by Nodularia spumigera. Journal of Applied Phycology, 11, 551–558.

    Article  Google Scholar 

  • Hornell, J. (1917). A new protozoan cause of widespread mortality among marine fishes. Madras Fisheries Investment Bulletin, 1, 53–56.

    Google Scholar 

  • Hubbart, B., Pitcher, G. C., Krock, B., & Cembella, A. D. (2012). Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae, 20, 30–41.

    Article  Google Scholar 

  • Ishimatsu, A., Maruta, H., Tsuchiyama, T., & Ozaki, M. (1990). Respiratory, ionoregulatory and cardiovascular responses of the yellow tail Seriola quinqeradiata on exposure to the red tide plankton Chattonella. Nippon Suisan Gakkaishi, 56, 189–199.

    Article  Google Scholar 

  • Jacob, P. K., & Menon, M. D. (1948). Incidence of fish mortality on the west coast. Journal of the Bombay Natural History Society, 47, 455.

    Google Scholar 

  • Jafari, N. G., & Gunale, V. R. (2005). Hydrobiological study of algae of an urban freshwater river. Journal of Applied Science and Environment Management, 10, 153–158.

    Google Scholar 

  • John, D. M., Whitton, B. A., & Brook, A. J. (2002). The freshwater algal Flora of the British Isles. An Identification guide to freshwater and terrestrial algae (p. 702). Cambridge: Cambridge University Press/Natural History Museum.

    Google Scholar 

  • Jugnu, R., & Kripa, V. (2009). Effect of Chattonella marina [(Subrahmanyan) Hara etChihara 1982] bloom on the coastal fishery resources along Kerala coast, India. Indian Journal of Geo-marine Sciences, 38(1), 77–78.

    Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Murukesh, N., Haridas, P. C., Nair, K. K. C., & Venugopal, P. (2003). Intense blooms of Trichodesmium erythraeum (Cyanophyta) in the open waters along east coast of India. Indian Journal of Marine Sciences, 32(2), 165–167.

    Google Scholar 

  • Karthik, R., & Padmavati, G. (2017). Temperature and salinity are the probable causative agent for the Trichodesmium erythraeum (Cyanophyceae) algal bloom on the Burmanallah coastal waters of South Andaman Island. World Applied Sciences Journal, 35(8), 1271–1281.

    Google Scholar 

  • Karthik, R., Arun Kumar, M., Sai Elangovan, S., Sivasankar, R., & Padmavati, G. (2012). Phytoplankton abundance and diversity in the coastal waters of Port Blair, South Andaman Island in relation to environmental variables. Journal of Marine Biological Oceanography, 1, 1–6.

    Google Scholar 

  • Karthik, R., Arun Kumar, M., & Padmavati, G. (2014). Silicate as the probable causative agent for the periodic blooms in the coastal waters of south Andaman Sea. Applied Environmental Research, 36, 37–45.

    Google Scholar 

  • Karunasagar, I., & Karunasagar, I. (1992). Gymnodinium nagasakiense red tide off Someshwar, West coast of India and mussel toxicity. Journal of Shellfish Research, 11, 477.

    Google Scholar 

  • Keller, M. D. (1989). Dimethyl sulfide production and marine phytoplankton: The importance of species composition and cell size. Biological Oceanography, 6(5–6), 375–382.

    Google Scholar 

  • Kim, J. H., Kim, J. H., Wang, P., Park, B. S., & Han, M. S. (2016). An improved quantitative real-time PCR assay for the enumeration of Heterosigmaakashiwo (Raphidophyceae) cysts using a DNA debris removal method and a cyst-based standard curve. PloS one, 11(1), e0145712.

    Article  Google Scholar 

  • Kloster, S., Six, K. D., Feichter, J., Maier-Reimer, E., Roeckner, E., Wetzel, P., et al. (2007). Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research, 112, G03005.

    Article  Google Scholar 

  • Kofoid, C. A., & Sweazy, M. (1921). The free living unarmoured Dionoflagellata. Memoirs of the University of California, 5, 1–562.

    Google Scholar 

  • Kononen, K., & Leppänen, J. M. (1997). Patchiness, scales and controlling mechanisms of cyanobacterial blooms in the Baltic Sea: application of a multi-scale research strategy. In M. Kahru & C. W. Brown (Eds.), Monitoring algal blooms: New techniques for detecting large-scale environmental change (pp. 63–84). Austin: Landes Bioscience.

    Google Scholar 

  • Koya, K. P. S., & Kaladharan, P. (1997). Trichodesmium bloom and mortality of Canthigaster margaritatus in the Lakshadweep Sea. Marine Fisheries Information Service Technical and Extension Series, 147, 14.

    Google Scholar 

  • Krishnan, A. A., Krishnakumar, P. K., & Rajagopalan, M. (2007). Trichodesmium erythraeum (EHR) bloom along the Southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coastal and Shelf Science, 71, 641–646.

    Article  Google Scholar 

  • Kubanek, J., Hicks, M. K., Naar, J., & Villareal, T. A. (2005). Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnology and Oceanography, 50, 883–895.

    Article  Google Scholar 

  • Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., et al. (2011). An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, 25, 1–17.

    Article  Google Scholar 

  • Leegaard, C. (1915). UntersuchungenübereinigePlanktonciliaten des Meeres. Nytt Mag Naturvid, 53, 1–37.

    Google Scholar 

  • Legrand, C., Rengefors, K., Fistarol, G. O., & Granéli, E. (2003). Allelopathy in phytoplankton – Biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419.

    Article  Google Scholar 

  • Lewis, W. M. J. (1986). Evolutionary interpretations of allelochemical interactions in phytoplankton algae. American Naturalist, 127, 184–194.

    Article  Google Scholar 

  • Long, R. A., & Azam, F. (2001). Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Microbiology, 67, 4975–4983.

    Article  Google Scholar 

  • Lu, D., & Goebel, J. (2001). Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chinese Journal of Oceanology and Limnology, 19, 337–344.

    Article  Google Scholar 

  • Lu, S., & Hodgkiss, I. J. (2004). Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia, 512, 231–238.

    Article  Google Scholar 

  • Luqman, M., Javed, M. M., Yousafzai, A., Saeed, M., Ahmad, J., & Chaghtai, F. (2015). Blooms of pollution indicator micro-alga (Synedra acus) in northern Arabian Sea along Karachi, Pakistan. Indian Journal of Geo-marine Sciences, 44(9), 1377–1381.

    Google Scholar 

  • Mackenzie, F. T., De Carlo, E. H., & Lerman, A. (2011). Coupled C, N, P, and O biogeochemical cycling at the Land–Ocean interface. In E. Wolanski & D. S. McLusky (Eds.), Treatise on estuarine and coastal science (Vol. 5, pp. 317–342). Waltham: Academic.

    Chapter  Google Scholar 

  • Madhu, N. V., Jyothibabu, R., Maheswaran, P. A., Gerson, V. J., Gopalakrishnan, T. C., & Nair, K. K. C. (2006). Lack of seasonality in phytoplankton standing stock (chlorophyll-a) and production in western Bay of Bengal. Continental Shelf Research, 26, 1868–1883.

    Article  Google Scholar 

  • Madhu, N. V., Reny, P. D., Paul, M., Ullas, N., & Resmi, P. (2011). Occurrence of red tide caused by Karenia mikimotoi (toxic dinoflagellate) in the Southwest coast of India. Indian Journal of Geo-marine Sciences, 40(6), 821–825.

    Google Scholar 

  • Margolis, L. (1993). A multi-species plankton bloom in Departure Bay. Aquaculture Update, 62, 1–3.

    Google Scholar 

  • Mashiatullah, A., Qureshi, R. M., Ahmad, N., Khalid, F., & Javed, T. (2009). Physico-chemical and biological water quality of Karachi coastal water. The Nucleus, 46(9), 53–59.

    Google Scholar 

  • Matrai, P. A., & Keller, M. D. (1994). Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: Intracellular variations. Marine Biology, 119(1), 61–68.

    Article  Google Scholar 

  • Matsusato, T., & Kobayashi, H. (1974). Studies on the death of fish caused by red tide. Bulletin of the Nansei Regional Fisheries Research Laboratory, 7, 43–67.

    Google Scholar 

  • Meng, P. J., Lee, H. J., Tew, K. S., & Chen, C. C. (2015). Effect of a rainfall pulse on phytoplankton bloom succession in a hyper-eutrophic subtropical lagoon. Marine and Freshwater Research, 66, 60–69.

    Article  Google Scholar 

  • Meng, P. J., Tew, K. S., Hsieh, H. Y., & Chen, C. C. (2016). Relationship between magnitude of phytoplankton blooms and rainfall in a hyper-eutrophic lagoon: A continuous monitoring approach. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2016.12.040.

  • Meng, P., Tew, K. S., Hsieh, H., & Chen, C. (2017). Relationship between magnitude of phytoplankton blooms and rainfall in a hyper-eutrophic lagoon: A continuous monitoring approach. Marine Pollution Bulletin, 124, 897–902.

    Article  Google Scholar 

  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514–517.

    Article  Google Scholar 

  • Mishra, S., & Panigraphy, R. C. (1995). Occurrence of diatom blooms in Bahuda estuary, East Coast of India. Indian Journal of Marine Science, 24, 99–101.

    Google Scholar 

  • Mishra, S., Sahu, G., Mohanty, A. K., Singh, S. K., & Panigrahy, R. C. (2006). Impact of the diatom Asterionella glacialis (Castracane) bloom on the water quality and phytoplankton community structure in coastal waters of Gopalpur Sea, Bay of Bengal. Asian Journal of Water, Environment and Pollution, 3(2), 71–77.

    Google Scholar 

  • Mohanty, A. K., Satpathy, K. K., Sahu, G., Hussain, K. J., Prasad, M. K. V., & Sarkar, S. K. (2010). Bloom of Trichodesmium erythraeum (Ehr.) and its impact on water quality and plankton community structure in the coastal waters of southeast coast of India. Indian Journal of Marine Science, 39(3), 323–333.

    Google Scholar 

  • Munshi, A. B., Hina, A. S., & Usmani, T. H. (2005). Determination of levels of PCBs in small fishes from three different coastal areas of Karachi, Pakistan. Pakistan Journal of Science Industrial Research, 48, 247–251.

    Google Scholar 

  • Murrell, M. C., & Lores, E. M. (2004). Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria. Journal of Plankton Research, 26, 71–382.

    Google Scholar 

  • Mutshinda, C. M., Finkel, Z. V., & Irwin, A. J. (2013). Which environmental factors control phytoplankton populations? A Bayesian variable selection approach. Ecological Modelling, 269, 1–8.

    Article  Google Scholar 

  • Nagabhushanam, A. K. (1967). On an unusually dense phytoplankton bloom around Minicoy Island (Arabian Sea) and its effect on tuna fisheries. Current Science, 36, 611.

    Google Scholar 

  • Nair, V. R. (2013). Status of flora and fauna of Gulf of Kachchh (Vol. 87, p. 157). Goa: National Institute of Oceanography.

    Google Scholar 

  • Nair, V. R., Devasssy, V. P., & Qasim, S. Z. (1981). Zooplankton and Trichodesmium phenomenon. Indian Journal of Marine Science, 9, 1–6.

    Google Scholar 

  • Naqvi, S. W. A., George, M. D., Narvekar, P. V., Jayakumar, D. A., Shailaja, M. S., Sardesai, S., et al. (1998). Severe fish mortality associated with ‘red tide’ observed in the sea off Cochin. Current Science, 75, 543–544.

    Google Scholar 

  • Narayana, S., Chitra, J., Tapase, S. R., Thamke, V., Karthick, P., Ramesh, C., et al. (2014). Toxicity studies of Trichodesmium erythraeum (Ehrenberg, 1830) bloom extracts, from Phoenix Bay, Port Blair, Andamans. Harmful Algae, 40, 34–39.

    Article  Google Scholar 

  • Naz, T., Burhan, Z., Munir, S., & Siddiqui, P. J. A. (2012). Taxonomy and seasonal distribution of Pseudonitzschia species (Bacillariophyceae) from the coastal water of Pakistan. Pakistan Journal of Botany, 44(4), 1467–1473.

    Google Scholar 

  • Nergis, Y., Sharif, M., Farooq, M. A., Hussain, A., & Butt, J. A. (2012). Impact of industrial and sewage effluents on Karachi coastal water and sediment quality. Middle East Journal of Scientific Research, 11, 1443–1454.

    Google Scholar 

  • Nishikawa, T., Hori, Y., Nagai, S., Miyahara, K., Nakamura, Y., Harada, K., et al. (2011). Long time-series observations in population dynamics of the harmful diatom Eucampia zodiacus and environmental factors in Harima-Nada, eastern Seto Inland Sea, Japan during 1974–2008. Plankton and Benthos Research, 6(1), 26–34.

    Article  Google Scholar 

  • Nishikawa, T., Hori, Y., Nagai, S., Miyahara, K., Nakamura, Y., Harada, K., et al. (2014). Long-term (36-year) observations on the dynamics of the fish-killing raphidophyte Chattonella in Harima-Nada, eastern Seto Inland Sea, Japan. Journal of Oceanography, 70(2), 153–164.

    Article  Google Scholar 

  • Onoue, Y., & Nozawa, K. (1989). Separation of toxin from harmful red tides occurring along the coast of Kogoshima prefecture. In T. Okaichi, D. M. Anderson, & T. Nemoto (Eds.), Red tides: Biology, environmental science, and technology (pp. 371–374). New York: Elsevier Science.

    Google Scholar 

  • Padmakumar, K. B., Menon, N. R., & Sanjeevan, V. N. (2012). Is occurrence of harmful algal blooms in the exclusive economic zone of India on the rise? International Journal of Oceanography, 2012, 1–7.

    Article  Google Scholar 

  • Palmer, T. N., & Ralsanen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415, 512–514.

    Article  Google Scholar 

  • Pant, A., & Devassy, V. P. (1976). Release of extracellular matter during photosynthesis by a Trichodesmium bloom. Current Science, 45, 487–489.

    Google Scholar 

  • Piepenburg, D., Voss, J., & Gutt, J. (1997). Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea Antarctica and off Northeast Greenland(artic): A comparison of diversity and abundance. Polar Biology, 17, 305–322.

    Article  Google Scholar 

  • Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El Nino and related precipitation variability. Nature, 502, 541–545.

    Article  Google Scholar 

  • Prabhu, M. S., Ramamurthy, S., Kuthalingam, M. D. K., & Dhulkheid, M. H. (1965). On an unusual swarming of the planktonic blue green algae Trichodesmium Spp. off Mangalore. Current Science, 34, 95.

    Google Scholar 

  • Prabhu, M. S., Ramamurthy, S., Dhulkhed, M. H., & Radhakrishnan, N. S. (1971). Trichodesmium bloom and failure of oil sardine fishery. Mahasagar, 4, 62.

    Google Scholar 

  • Prasath, B., Nandakumar, R., Jayalakshmi, T., & Santhanam, P. (2014). First report on the intense cyanobacteria Microcystis aeruginosa Kützing, 1846 bloom at Muttukadu Backwater, southeast coast of India. Indian Journal of Geo-marine Sciences, 43(2), 258–262.

    Google Scholar 

  • Price, A. R. G., Keeling, M. J., & O’Calllaghan, C. J. (1999). Ocean-scale patterns of biodiversity of Atlantic asteroids determined from taxonomic distinctness and other measures. Biological Journal of the Linnean Society, 66, 187–203.

    Google Scholar 

  • Qadri, M., Nergis, Y., Mughal, N. A., Sharif, M., & Farooq, M. A. (2011). Impact of marine pollution at Karachi coast in perspective of Lyari river. American-Eurasian Journal of Agricultural & Environmental Sciences, 10, 737–743.

    Google Scholar 

  • Qasim, S. Z. (1970). Some characteristic of a Trichodesmium bloom in the Laccadives. Deep Sea Research, 17, 655–660.

    Google Scholar 

  • Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480(7375), 51–56.

    Article  Google Scholar 

  • Qureshi, S. M., Mashiatullah, A., Rizvi, S. H. N., Khan, S. H., Javed, T., & Tasneem, M. A. (2001). Marine pollution studies in Pakistan by nuclear technology. The Nucleus, 38, 41–51.

    Google Scholar 

  • Rabbani, M. M., Rehman, A. U., & Harms, C. E. (1990). Mass mortality of fishes caused by dinoflagellate bloom in Gwadar Bay, southwestern Pakistan. In: E. Graneli, B. Sundstroem, L. Edler & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 209–214). Karachi: National Institute of Oceanography.

    Google Scholar 

  • Raghuprasad, R., & Jayaraman, R. (1954). Preliminary studies on certain changes in the plankton and hydrological conditions associated with the swarming of Noctiluca. Proceedings of the Indian Academy of Sciences, 40, 49–57.

    Google Scholar 

  • Rajagopalan, M. (2007). Trichodesmium (Ehr.) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coastal and Shelf Science, 71, 641–646.

    Article  Google Scholar 

  • Ramamurthy, V. D., Selva Kumar, R. A., & Bhargava, R. M. S. (1972). Studies on the blooms of Trichodesmium erythraeum (EHR) in the waters of the Central west coast of India. Current Science, 41, 803–805.

    Google Scholar 

  • Raymont, J. E. G. (1980). Plankton and productivity in the oceans. Part. I. Phytoplankton (p. 489). Oxford: Pergamon Press.

    Google Scholar 

  • Reed, R. H., & Stewart, W. D. P. (1988). The responses of cyanobacteria to salt stress. In L. J. Rogers & J. R. Gallon (Eds.), Biochemistry of the algae and cyanobacteria (Vol. 12, pp. 217–231). Oxford: Clarendon Press.

    Google Scholar 

  • Reginald, M. (2007). Studies on the importance of micro algae in solar salt production. Seaweed Research Utilization, 29, 151–184.

    Google Scholar 

  • Reynolds, C. S. (2006). The ecology of phytoplankton (p. 402). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reynolds, C. S., Jaworski, G. H. M., Cmiech, H. A., & Leedale, G. F. (1981). On the annual cycle of the blue – Green algae Microcystis aeruginosa Kutz. Emend. Elenkin. Philosophical Transactions of The Royal Society B Biological Sciences, 293, 419–477.

    Article  Google Scholar 

  • Rogers, K., Clarke, K. R., & Reynolds, J. D. (1999). The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-East Atlantic. The Journal of Animal Ecology, 68, 769–782.

    Article  Google Scholar 

  • Sachithanandam, V., Mohan, P. M., Karthik, R., Elangovan, S. S., & Padmavathi, G. (2013). Climate change influence the phytoplankton bloom (prymnesiophyceae: Phaeocystis spp.) in North Andaman coastal region. Indian Journal of Geo-marine Sciences, 42, 58–66.

    Google Scholar 

  • Sahayak, S., Jyothibabu, R., Jayalakshmi, K. J., Habeebrehman, H., Sabu, P., Prabhakaran, M. P., Jasmine, P., Shaiju, P., George, R. M., Thresiamma, J., & Nair, K. K. C. (2005). Red tide of Noctiluca miliaris off south of Thiruvananthapuram subsequent to the ‘stench event’ at the southern Kerala coast. Current Science, 89, 1472–1473.

    Google Scholar 

  • Sahu, B. K., Begum, M., Khadanga, M., Jha, D. K., Vinithkumar, N., & Kirubagaran, R. (2013). Evaluation of significant sources influencing the variation of physico-chemical parameters in Port Blair Bay, South Andaman, India by using multivariate statistics. Marine Pollution Bulletin, 66, 246–251.

    Article  Google Scholar 

  • Sahu, B. K., Begum, M., Kumarasamy, P., Vinithkumar, N. V., & Kirubagaran, R. (2014a). Dominance of Trichodesmium and associated biological and physico-chemical parameters in coastal water of Port Blair, South Andaman Island. Indian Journal of Geo-Marine Sciences, 43, 1739–1745.

    Google Scholar 

  • Sahu, B. K., Begum, M., Kumarasamy, P., Vinithkumar, N., & Kirubagaran, R. (2014b). Dominance of Trichodesmium and associated biological and physico-chemical parameters in coastal waters of Port Blair, South Andaman Island. Indian Journal of Geo-marine Sciences, 43, 1–7.

    Google Scholar 

  • Sahu, G., Mohanty, A. K., Acharya, M. S., Sarkar, S. K., & Satpathy, K. K. (2015). Changes in mesozooplankton community structure during Trichodesmium erythraeum bloom in the coastal waters of southwestern Bay of Bengal. Indian Journal of Geo-marine Sciences, 44(9), 1282–1293.

    Google Scholar 

  • Saifullah, S. M., Khan, S. H., & Iftikhar, S. (2000). Distribution of a trace metal Iron in mangrove habitat of Karachi. Symposium on Arabian Sea as a Resource of Biological diversity, Pakistan.

    Google Scholar 

  • Saifullah, S. M., Ismail, S., & Khan, S. H. (2002a). Copper contamination in Indus delta mangrove of Karachi. In Prospectus for saline agriculture (p. 447). Cham: Springer.

    Google Scholar 

  • Saifullah, S. M., Khan, S. H., & Ismail, S. (2002b). Distribution of nickel in a polluted mangrove habitat of the Indus Delta. Marine Pollution Bulletin, 44, 570–576.

    Article  Google Scholar 

  • Santhanam, R. (1976). PhD thesis. Annamalai university, Chidambaram, India, p. 101.

    Google Scholar 

  • Santhanam, R., Srinivasan, A., Ramadhas, V. M., & Devraj, P. (1994a). Impact of Trichodesmium bloom on the plankton and productivity in the tuticorin bay, southeast coast of India. Indian Journal of Marine Science, 23, 27–30.

    Google Scholar 

  • Santhanam, R., Srinivasan, A., Ramadhas, V., & Devaraj, M. (1994b). Impact of Trichodesmium bloom on the plankton and productivity in the Tuticorin Bay, southeast coast of India, Indian. Journal of Marine Science, 23, 27–30.

    Google Scholar 

  • Santhanam, P., Balaji Prasath, B., Nandakumar, R., Jothiraj, K., Dinesh Kumar, S., Ananth, S., Prem Kumar, C., Shenbaga Devi, A., & Jayalakshmi, T. (2013). Bloom in the Muthupettai mangrove lagoon, Southeast coast of India. Seaweed Research Utilization, 35, 178–186.

    Google Scholar 

  • Sarangi, R. K., Prakash, C., & Nayak, S. R. (2004). Detection and monitoring of Trichodesmium bloom in the coastal waters of Sourashtra coast, India using IRS P4 OCM data. Current Science, 86, 1636–1841.

    Google Scholar 

  • Sarangi, R. K., Chauhan, P., & Nayak, S. R. (2005). Inter-annual variability of phytoplankton blooms in the northern Arabian Sea during winter monsoon period (February–March) using IRS-P4 OCM data. Indian Journal of Marine Sciences, 34(2), 163–173.

    Google Scholar 

  • Sargunam, C. A., Rao, V. N. R., & Nair, K. V. K. (1989). Occurrence of Noctiluca bloom in Kalpakkam coastal waters, east coast of India. Indian Journal of Marine Science, 18, 289–290.

    Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production, 15(16), 1559–1567.

    Article  Google Scholar 

  • Sasmal, S. K., Panigrahy, R. C., & Mishra, S. (2005). Asterionella blooms in the northwestern Bay of Bengal during, 2004. International Journal of Remote Sensing, 26(10), 3853.

    Article  Google Scholar 

  • Satpathy, K. K., & Nair, K. V. K. (1996). Occurrence of phytoplankton bloom and its effect on coastal water quality. Indian Journal of Marine Science, 25, 145–147.

    Google Scholar 

  • Satpathy, K. K., Mohanty, A. K., Sahu, G., Prasad, M. V. R., Venkatesan, R., Natesan, U., & Rajan, M. (2007). On the occurrence of Trichodesmium erythraeum (Ehr.) bloom in the coastal waters of Kalpakkam, east coast of India. Indian Journal of Science and Technology, 1(2), 1–9.

    Google Scholar 

  • Saunders, R. D., & Glenn, D. A. (1969). Diatoms. Memoirs of the Hourglass Cruises, 1(3), 1–119.

    Google Scholar 

  • Savage, R. E., & Wimpenny, R. S. (1936). Phytoplankton and the Herring, Part II 1933–1934. Ministry of Agriculture and Fisheries Investments, Series II 1936, 15(1), 1–88.

    Google Scholar 

  • Selvakumar, K., & Sundararaman, M. (2007). Diversity of cyanobacterial flora in the backwaters of Palk bay region. Seaweed Research Utilization, 29, 139–144.

    Google Scholar 

  • Shetty, H. P. C., & Saha, S. B. (1971). On the significance of the occurrence of blooms of the diatom Hemidiscus hardmannianus (Greville) Mann in relation to Hilsa fishery in Bengal. Current Science, 40(15), 410–411.

    Google Scholar 

  • Shetty, H. P. C., Gupta. T. R. C., & Kattai, R. J. (1988). Green water phenomena in the Arabian Sea off Mangalore. In Proceedings of the first India fisheries forum, pp. 339–346.

    Google Scholar 

  • Shumway, E. S. (1990). A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21, 65–105.

    Article  Google Scholar 

  • Sivonen, K. (1996). Cyanobacterial toxins and toxin production. Phycologia, 35, 12–24.

    Article  Google Scholar 

  • Six, K. D., Kloster, S., Ilyina, T., Archer, S. D., Zhang, K., & Maier-Reimer, E. (2013). Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nature Climate Change, 3, 975–978.

    Article  Google Scholar 

  • Smayda, T. J. (1997). Bloom dynamics: Physiology, behavior, trophic effects. Limnology and Oceanography, 42(5 part 2), 1132–1136.

    Article  Google Scholar 

  • Smayda, T. J. (2007). Reflections on the ballast water dispersal- harmful algal bloom paradigm. Harmful Algae, 6, 601–622.

    Article  Google Scholar 

  • Staehr, P. A., Testa, J. M., Kemp, W. M., Cole, J. J., Sand-Jensen, K., & Smith, S. V. (2012). The metabolism of aquatic ecosystems: History, applications, and future challenges. Aquatic Sciences, 74, 15–29.

    Article  Google Scholar 

  • Stefels, J., Steinke, M., Turner, S., Malin, G., & Belviso, S. (2007). Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83(1–3), 245–275.

    Article  Google Scholar 

  • Strickland, J. R. D., & Parsons, T. R. (1972). A practical handbook of seawater analysis (Bulletin 167, pp. 310). Ottawa: Fisheries Research Board of Canada.

    Google Scholar 

  • Subba Rao, S. D. V. (1969). Asterionella japonica bloom and discolouration off Waltair, Bay of Bengal. Limnology and Oceanography, 14, 632–634.

    Article  Google Scholar 

  • Subba Rao, D. V., Pan, Y., & Smith, S. J. (1995). Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic PseudoNitzschia pungens f. multiseries (Hasle). In P. Lassus, G. Arzul, E. Erard, P. Gentien, & C. Marcaillou (Eds.), Harmful marine algal blooms (pp. 681–686). Paris: Lavoisier Intercept.

    Google Scholar 

  • Subrahmanyan, R. (1954). On the life history and ecology of Hornellia marina Gen. Ersp. Nov, (Chloromonodinaeae), causing green discolouration of the sea and mortality among marine organisms off the Malabar coast. Proceedings of the Indiana Academy of Sciences, 39, 182–203.

    Google Scholar 

  • Subrahmanyan, R. (1968). The Dinophyceae of the Indian seas. Part 1. Genus Ceratium (p. 129). Cochin: The City Press.

    Google Scholar 

  • Subrahmanyan, R. (1971). The Dinophyceae of the Indian seas. Part 2. Genus Peridinium (p. 334). Cochin: The City Press.

    Google Scholar 

  • Subrahmnayan, R. (1959). Studies on the phytoplankton of the west coast of India. Part I. Quantitative and qualitative fluctuation of total phytoplankton crop, the zooplankton crop and their interrelationship with remarks on the magnitude of the standing crop and production of matter and their relationship to fish landings. Proceedings of the Indiana Academy of Sciences, 50, 113–187.

    Google Scholar 

  • Subramanian, A., & Purushothaman, A. (1985). Mass mortality of fish and invertebrates associated with a bloom of Hemidiscus hardmannianus (Bacillariophyceae) in Parangipettai (Southern India). Limnology and Oceanography, 30(4), 910–911.

    Article  Google Scholar 

  • Suikkanen, S., Fistarol, G. O., & Granéli, E. (2005). Effects of cyanobacterial allelochemicals on a natural plankton community. Marine Ecology Progress Series, 287, 1–9.

    Article  Google Scholar 

  • Sweeney, B. M. (1976). Pedinomonas noctilucae (Prasinophyceae) the flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. Journal of Phycology, 12, 460–464.

    Google Scholar 

  • Takahashi, M., Seibert, D. L., & Thomas, W. H. (1977). Occasional blooms of phytoplankton during summer in Saanich Inlet, BC, Canada. Deep Sea Research, 24(8), 775–780.

    Article  Google Scholar 

  • Takayama, H., & Adachi, R. (1984). Gymnodinium nagasakiense sp nov., a red-tide forming dinophyte in the adjacent waters of the Sea of Japan. Bulletin of the Plankton Society of Japan, 31, 7–14.

    Google Scholar 

  • Tan, J., Jakob, C., Rossow, W. B., & Tselioudis, G. (2015). Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519, 451–454.

    Article  Google Scholar 

  • Tanaka, K., Muto, Y., & Shimada, M. (1994). Generation of superoxide anion radicals by the marine phytoplankton organism Chattonella antique. Journal of Plankton Research, 16, 161–169.

    Article  Google Scholar 

  • Tang, D. L., Di, B. P., Wei, G., Ni, I., Oh, I. S., & Wang, S. (2006). Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568, 245–253.

    Article  Google Scholar 

  • Tangen, K. (1977). Blooms of Gyrodinium aureolum (Dinophyceae) in North European waters accompanied by mortality of marine organisms. Sarsia, 63, 123–133.

    Article  Google Scholar 

  • Thajuddin, N., Nagasathya, A., Chelladevi, R., & Saravanan, I. (2002). Biodiversity of cyanobacteria in different salt pans of Pudukkottai District, Tamilnadu. Seaweed Research and Utilization, 24, 1–11.

    Google Scholar 

  • Tillmann, U., & John, U. (2002). Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: An allelochemical defence mechanism independent of PSP-toxin content. Marine Ecology Progress Series, 230, 47–58.

    Article  Google Scholar 

  • Tomas, C. R. (1996). Identifying marine diatoms and dinoflagellates (p. 598). New York: Academic.

    Google Scholar 

  • Tomas, C. R. (1997). Identifying marine phytoplankton. Academic Press, USA. UNESCO. Protocols for the joint global ocean flux study (JGOFS). Manual and guides (Vol. 29, p. 170).

    Google Scholar 

  • Uher, G. (2006). Distribution and air-sea exchange of reduced sulphur gases in European coastal waters. Estuarine Coastal and Shelf Science, 70, 338–360.

    Article  Google Scholar 

  • Ulrich, R. M., Casper, E. T., Campbell, L., Richardson, B., Heil, C. A., & Paul, J. H. (2010). Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae, 9, 116–122.

    Article  Google Scholar 

  • Vallina, S. M., Simó, R., & Manizza, M. (2007). Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 16004–16009.

    Article  Google Scholar 

  • Velankar, A. D., & Chaugule, B. B. (2007). Algae of the salt pans of Nalasopara, Mumbai. Seaweed Research Utilization, 29, 273–278.

    Google Scholar 

  • Verity, P. G., & Villareal, T. A. (1986). The relative food value of diatoms, dinoflagellates, flagellates and cyanobacteria for tintinnid ciliates. Archiv für Protistenkunde, 31, 71–84.

    Article  Google Scholar 

  • Wang, S., Tang, D. L., He, F. L., & Aza, Y. F. (2008). Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia, 596, 79–93.

    Article  Google Scholar 

  • Westberry, T. K., & Siegel, D. A. (2006). Spatial and temporal distribution of Trichodesmium in the world’s oceans. Global Biogeochemical Cycles, 20, GB4016.

    Article  Google Scholar 

  • White, W. A. (1981). Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnology and Oceanography, 28, 103–109.

    Article  Google Scholar 

  • Wolfe, J. M., & Rice, E. L. (1979). Allelopathic interactions among algae. Journal of Chemical Ecology, 5(4), 533–542.

    Article  Google Scholar 

  • Yamamoto, T. (2003). The Seto Inland Sea – Eutrophic or oligotrophic? Marine Pollution Bulletin, 47(1), 37–42.

    Article  Google Scholar 

  • Yoshinaga, I., Hitomi, T., Miura, A., Shiratani, E., & Miyazaki, T. (2006). Cyanobacterium Microcystis bloom in a eutrophicated regulating reservoir. Japan Agricultural Research Quarterly, 40(3), 283–289.

    Article  Google Scholar 

  • Zhang, F., Ma, L., Xu, Z., Zheng, J., Shi, Y., Lu, Y., & Miao, Y. (2009). Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae, 8, 839–842.

    Article  Google Scholar 

  • Zhou, Z. X., Yu, R., & Zhou, M. J. (2017). Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecological Modelling, 360(2017), 150–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S.K. (2018). Algal Blooms: Potential Drivers, Occurrences and Impact. In: Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts. Springer, Singapore. https://doi.org/10.1007/978-981-10-8261-0_2

Download citation

Publish with us

Policies and ethics