Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 280 Accesses

Abstract

Video content accounted for almost two thirds of the world’s consumer internet traffic in 2014, and is predicted to account for 80% by 2020; by the end of this decade, it is expected that almost one million minutes of video content will cross global IP networks every second Cisco (Cisco visual networking index: forecast and methodology, 2015–2020, 2016) [1]. According to Sandvine’s 2016 “Global Internet Phenomena Report” Sandvine (Global internet phenomena, 2016) [2], video streaming accounts for over 60% of peak-hour broadband internet traffic consumption in North America, with Netflix (35%) and YouTube (18%) being the main contributors. In a video streaming scenario, a variety of users with different resources in terms of screen size, resolution, processing power, and network bandwidth, are accessing the same video content, as illustrated in Fig. 1.1. Currently, the heterogeneous requirements of web streaming are met by storing hundreds of copies of the same video on the server Gigaom (To stream everywhere, netflix encodes each Movie 120 times, 2012) [3]. Clearly, there exists a lot of redundancy between the different copies; the reason for this “wasteful” storage is that existing video coding standards (e.g., H.264/AVC Wiegand, Sullivan, Bjøntegaard, Luthra (IEEE Trans. Circuit Syst. Video Technol. 13(7):560–576, 2003) [4] and HEVC Sullivan, Ohm, Han, Wiegand (IEEE Trans. Circuit Syst. Video Technol. 22(12):1649–1668 2012) [5]) are optimized for a predefined set of network and decoder constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the thesis, we use the term “physical” motion to refer to the apparent physical motion of rigid objects, i.e., the projection of 3D moving objects onto the 2D camera sensor plane.

References

  1. Cisco, Cisco visual networking index: forecast and methodology, 2015–2020, Technical Report (2016)

    Google Scholar 

  2. Sandvine, Global internet phenomena (2016), https://www.sandvine.com/trends/global-internet-phenomena/. Accessed 30 August 2016

  3. Gigaom, To stream everywhere, netflix encodes each Movie 120 times (2012), https://gigaom.com/2012/12/18/netflixencoding/. Accessed 30 August 2016

  4. T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuit Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  5. G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuit Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  6. H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuit Syst. Video Technol. 17(9), 1103–1120 (2007)

    Google Scholar 

  7. P. Helle, H. Lakshman, M. Siekmann, J. Stegemann, T. Hinz, H. Schwarz, D. Marpe, T. Wiegand, A scalable video coding extension of HEVC, in Proceedings IEEE Data Compression Conference (2013)

    Google Scholar 

  8. IM360, Creating immersive experiences (2016), http://www.im360.info/. Accessed 30 August 2016

  9. D. Taubman, M.W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice (Kluwer Academic Publishers, Boston, 2002)

    Google Scholar 

  10. D. Taubman, R. Prandolini, Architecture, philosophy, and performance of JPIP: internet protocol standard for JPEG2000, in Proeedings SPIE, vol. 5150 (2003), pp. 791–805

    Google Scholar 

  11. N. Adami, A. Signoroni, R. Leonardi, State-of-the-art and trends in scalable video compression with wavelet-based approaches. IEEE Trans. Circuit Syst. Video Technol. 17(9), 1238–1255 (2007)

    Article  Google Scholar 

  12. S. Milani, G. Calvagno, Segmentation-based motion compensation for enhanced video coding, in Proceedings IEEE International Conference Image Procesing (2011), pp. 1649–1652

    Google Scholar 

  13. R. Mathew, D.S. Taubman, Scalable modeling of motion and boundary geometry with quad-tree node merging. IEEE Trans. Circuit Syst. Video Technol. 21(2), 178–192 (2011)

    Article  Google Scholar 

  14. I. Daribo, D. Florencio, G. Cheung, Arbitrarily shaped sub-block motion prediction in texture map compression using depth information. Pict. Codin. Symp. 121–124 (2012)

    Google Scholar 

  15. R. Mathew, D. Taubman, P. Zanuttigh, Scalable coding of depth maps with R-D optimized embedding. IEEE Trans. Image Proc. 22(5), 1982–1995 (2013)

    Google Scholar 

  16. G. Ottaviano, P. Kohli, Compressible motion fields, in Proceeding IEEE Conference Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  17. A. Zheng, Y. Yuan, H. Zhang, H. Yang, P. Wan, O. Au, Motion vector fields based video coding, in Proceeding IEEE International Conference Image Processing (2015), pp. 2095–2099

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Rüfenacht .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rüfenacht, D. (2018). Introduction. In: Novel Motion Anchoring Strategies for Wavelet-based Highly Scalable Video Compression. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8225-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8225-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8224-5

  • Online ISBN: 978-981-10-8225-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics