Skip to main content

The Overview of Honey Bee Diversity and Health Status in Asia

  • Chapter
  • First Online:
Asian Beekeeping in the 21st Century

Abstract

 Traditional honey bee hunting and beekeeping are vital to the economic and spiritual lives of Asians. Bee products are known as not only food/food supplement but also traditional medicine for aiming to promote good health, especially in eastern regions. Honey bees also play crucial roles in pollination. Asia is regarded as the homeland of honey bees as it hosts at least nine honey bee species. The European honey bee was introduced from Europe, North America, and Oceania to Russia, Japan, India and other countries in Asia. The growth of global human population size, globalized trade economic wealth, and technological developments in transportation efficacy has promoted the transmission of bee diseases, parasites and pests. A great concern over honeybee population decline has accelerated research in bee diseases, parasites, and pests. This chapter provides an up-to-date information on bee diseases, parasites, and pests in Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP, Bhat AA (1990) Studies on ‘Thai sac brood virus’ affecting indigenous honeybee Apis cerana indica Fab. colonies - prospects and future strategies – I. J Anim Morphol Physiol 37:101–108

    Google Scholar 

  • Abrol DP, Putatunda BN (1996) New record of Tropilaelaps clareae (Acarina: Mesostigmata) associated with Xylocopa irridipennis from India. Sci Cult 62:59

    Google Scholar 

  • Ai H, Yan X, Han R (2012) Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. J Invertebr Pathol 109(1):160–164

    Article  PubMed  Google Scholar 

  • Akrantanakul P (1987) Honey bee diseases and enemies in Asia. In: A parasitoidal guide. FAO, Rome

    Google Scholar 

  • Allen M, Ball B (1996) The incidence and world distribution of honey bee viruses. Bee World 77:141–162. https://doi.org/10.1080/0005772X.1996.11099306

    Article  Google Scholar 

  • Amr SZ, Shehada SE, Abo-Shehada M et al (1998) Honey bee parasitic arthropods in Jordan. Apiacta 3:78–82

    Google Scholar 

  • Anderson DL (1984) A comparison of serological techniques for detecting and identifying honeybee viruses. J Invertebr Pathol 44:233–243. https://doi.org/10.1016/0022-2011(84)90019-3

    Article  Google Scholar 

  • Anderson DL (2004) Varroa mites and their host relationships in the Philippines. In: Proceedings of the 7th Asian apicultural association conference and 10th beenet symposium and technoflora, Laguna, Luzon, Philippines, pp 177–178

    Google Scholar 

  • Anderson DL, Fuchs S (1998) Two genetically distinct populations of Varroa jacobsoni with contrasting reproductive abilities on Apis mellifera. J Apic Res 37:69–78. https://doi.org/10.1080/00218839.1998.11100957

    Article  Google Scholar 

  • Anderson DL, Morgan MJ (2007) Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Exp Appl Acarol 43:1–24. https://doi.org/10.1007/s10493-007-9103-0

    Article  PubMed  Google Scholar 

  • Anderson DL, Roberts JMK (2013) Standard methods for Tropilaelaps mites research. J Apic Res 52:1–16. https://doi.org/10.3896/IBRA.1.52.4.21

    Article  Google Scholar 

  • Anderson D, Giacon H, Gibson N (1997) Detection and thermal destruction of the chalkbrood fungus (Ascosphaera apis) in honey. J Apic Res 36:163–168. https://doi.org/10.1080/00218839.1997.11100944

    Article  Google Scholar 

  • Anderson DL, Sukarsih (1996) Changed Varroa jacobsoni reproduction in Apis mellifera colonies in Java. Apidologie 27:461–466

    Article  Google Scholar 

  • Anderson DL, Trueman JW (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24:165–189

    Article  CAS  PubMed  Google Scholar 

  • Ansari MJ, Al-Ghamdi A, Nuru A, Ahmed AM, Ayaad TH, Al-Qarni A, Alattal Y, Al-Waili N (2017) Survey and molecular detection of Melissococcus plutonius, the causative agent of European foulbrood in honeybees in Saudi Arabia. Saudi J Biol Sci 24(6):1327–1335. https://doi.org/10.1016/j.sjbs.2016.10.012

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Tominaga K, Wu M et al (2012) Diversity of Melissococcus plutonius from honey bee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS One 7:e33708. https://doi.org/10.1371/journal.pone.0033708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arias MC, Sheppard WS (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol Phylogenet Evol 37:25–35

    Article  CAS  PubMed  Google Scholar 

  • Aronstein KA, Murray KD (2010) Chalkbrood disease in honey bees. J Invertebr Pathol 103(Suppl 1):S20–S29. https://doi.org/10.1016/j.jip.2009.06.018

    Article  PubMed  Google Scholar 

  • Bailey L, Carpenter JM, Woods RD (1982) The diminished incidence of Acarapis woodi (Rennie) (Acari: Tarsonelidae) in honeybee, Apis mellifera L. (Hymenoptera: Apidae), in Britain. B Entomol Res 72:655–662

    Article  Google Scholar 

  • Beetsma J, Boot WJ, Calis J (1999) Invasion behaviour of Varroa jacobsoni Oud.: from bees into brood cells. Apidologie 30:125–140

    Article  Google Scholar 

  • Bharadwaj RK (1968) A new record of mite, Tropilaelaps clareae from Apis dorsata. Bee World 49:115

    Article  Google Scholar 

  • Boecking O, Spivak M (1999) Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie 30:141–158. https://doi.org/10.1051/apido:19990205

    Article  Google Scholar 

  • Booppha B, Eittsayeam S, Pengpat K et al (2010) Development of bioactive ceramics to control mite and microbial diseases in bee farms. Adv Mater Res 93:553–557

    Article  CAS  Google Scholar 

  • Boot WJ, Tan NQ, Dien PC et al (1997) Reproductive success of Varroa jacobsoni in brood of its original host, Apis cerana, in comparison to that of its new host, A. mellifera (Hymenoptera: Apidae). Bull Entomol Res 87:119–126

    Article  Google Scholar 

  • BotĂ­as C, Anderson DL, Meana A et al (2012) Further evidence of an oriental origin for Nosema ceranae (Microsporidia: Nosematidae). J Invertebr Pathol 110:108–113. https://doi.org/10.1016/j.jip.2012.02.014

    Article  PubMed  Google Scholar 

  • Brion ACB (2015) Small hive beetle poses threat to bee industry. Available via the Philippine star. https://www.philstar.com/business/agriculture/2015/02/22/1426217/small-hive-beetle-poses-threat-bee-industry. Accessed 22 Nov 2017

  • Buawangpong N, de Guzman LI, Khongphinitbunjong K et al (2015) Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies. Apidologie 46:779–786. https://doi.org/10.1007/s13592-015-0368-8

    Article  Google Scholar 

  • BĂ¼chler R, Drescher W, Tornier I (1992) Grooming behaviour of Apis cerana, Apis mellifera and Apis dorsata and its effects on the parasitic mites Varroa jacobsoni and Tropilaelaps clareae. Exp Appl Acarol 16:313–319

    Article  Google Scholar 

  • Burgett DM, Kitprasert C (1990) Evaluation of Apistan as a control for Tropilaelaps clareae (Acari: Laelapidae), an Asian honey bee brood mite parasite. Am Bee J 130:51–53

    Google Scholar 

  • Burgett M, Akratanakul P, Morse RA (1983) Tropilaelaps clareae: a parasite of honeybees in South-East Asia. Bee World 64:25–28. https://doi.org/10.1080/0005772X.1983.11097904

    Article  Google Scholar 

  • Camphor ESW, Hashmi AA, Ritter W et al (2005) Seasonal changes in mite (Tropilaelaps clareae) and honeybee (Apis mellifera) populations in Apistan treated and untreated colonies. Apiacta 40:34–44

    Google Scholar 

  • Cervancia C (1993) Philippines beekeeping: status of research and development. In: Proc. Beenet Asia, pp 49–63

    Google Scholar 

  • Chaimanee V, Warrit N, Chantawannakul P (2010) Infections of Nosema ceranae in four different honeybee species. J Invertebr Pathol 105:207–210

    Article  PubMed  Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball BV et al (2000) Fungal biocontrol of acari. Biocontrol Sci Technol 10:357–384. https://doi.org/10.1080/09583150050114972

    Article  Google Scholar 

  • Chantawannakul P, Dancer BN (2001) American foulbrood in honey bees. Bee World 82:168–180

    Article  Google Scholar 

  • Chantawannakul P, Puchanichanthranon T, Wongsiri S (2005) Inhibitory effects of some medicinal plant extracts on the growth of Ascosphaera apis. Acta Hortic 678:183–189

    Article  Google Scholar 

  • Chantawannakul P, Ward L, Boonham N et al (2006) A scientific note on the detection of honey bee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J Invertebr Pathol 91:69–73. https://doi.org/10.1016/j.jip.2005.11.001

    Article  PubMed  CAS  Google Scholar 

  • Chantawannakul P, de Guzman LI, Li J et al (2016) Parasites, pathogens, and pests of honeybees in Asia. Apidologie 47:301–324. https://doi.org/10.1007/s13592-015-0407-5

    Article  Google Scholar 

  • Chen YP, Huang ZY (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 41:364–374. https://doi.org/10.1051/apido/2010021

    Article  CAS  Google Scholar 

  • Chen YP, Siede R (2007) Honey bee viruses. In: Karl Maramorosch AJS, Frederick AM (eds) Advances in virus research, vol 70. Academic, London, pp 33–80

    Google Scholar 

  • Chen YW, Wang C, James A et al (2000) Susceptibility of the Asian honey bee, Apis cerana, to American foulbrood, Paenibacillus larvae larvae. J Apic Res 39:169–175

    Article  Google Scholar 

  • Chen YP, Zhao Y, Hammond J et al (2004) Multiple virus infections in the honeybee and genome divergence of honeybee viruses. J Invertebr Pathol 87:84–93

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Evans J, Feldlaufer M (2006a) Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J Invertebr Pathol 92:152–159. https://doi.org/10.1016/j.jip.2006.03.010

    Article  PubMed  Google Scholar 

  • Chen YP, Pettis JS, Collins A et al (2006b) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72:606–611. https://doi.org/10.1128/AEM.72.1.606-611.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choe SE, Nguyen LTK, Noh JH et al (2012) Prevalence and distribution of six bee viruses in Korean Apis cerana populations. J Invertebr Pathol 109:330–333. https://doi.org/10.1016/j.jip.2012.01.003

    Article  PubMed  Google Scholar 

  • Crane E (1990) Bees and beekeeping: science, practice and world resources. In: Bees and beekeeping: science, practice and world resources. pp xvii-+614

    Google Scholar 

  • Crane E (1999) The world history of beekeeping and honey hunting. Gerald Duckworth & Co, Ltd, London

    Google Scholar 

  • Dainat B, Ken T, Berthoud H et al (2009) The ectoparasitic mite Tropilaelaps mercedesae (Acari, Laelapidae) as a vector of honeybee viruses. Insect Soc 56:40–43. https://doi.org/10.1007/s00040-008-1030-5

    Article  Google Scholar 

  • Davis C, Ward W (2003) Control of chalkbrood disease with natural products: a report for the Rural Industries Research and Development Corporation. RIRDC publication no. 03/107, Kingston

    Google Scholar 

  • de Guzman LI, Delfinado-Baker M (1996) A new species of Varroa (Acari: Varroidae) associated with Apis koschevnikovi (Apidae: Hymenoptera) in Borneo. Int J Acarol 22:23–27. https://doi.org/10.1080/01647959608684077

    Article  Google Scholar 

  • de Guzman LI, Frake AM (2007) Temperature affects Aethina tumida (Coleoptera: Nitidulidae) development. J Apic Res 46:88–93. https://doi.org/10.1080/00218839.2007.11101373

    Article  Google Scholar 

  • de Guzman LI, Rinderer TE (1998) Distribution of the Japanese and Russian genotypes of Varroa jacobsoni. Honey Bee Sci 19:115–119

    Google Scholar 

  • de Guzman LI, Rinderer TE (1999) Identification and comparison of Varroa species infesting honey bees. Apidologie 30:85–95

    Article  Google Scholar 

  • de Guzman LI, Burgett M, Rinderer TE (2001) Biology and life history of Acarapis dorsalis and Acarapis externus Mites of the honey bee. Dadant, Hamilton, pp 17–27

    Google Scholar 

  • de Guzman LI, Rinderer TE, Frake AM (2015) The effects of diet, mating duration, female to male ratios, and temperature on ovary activation, mating success, and fecundity of Aethina tumida. Apidologie 46:326–336. https://doi.org/10.1007/s13592-014-0325-y

    Article  CAS  Google Scholar 

  • de Guzman LI, Williams GR, Khongphinitbunjong K et al (2017) Ecology, life history and management of Tropilaelaps Mites. J Econ Entomol 110(2):319–332

    Article  PubMed  Google Scholar 

  • De Jong D (1988) Varroa jacobsoni does reproduce in worker cells of Apis cerana in South Korea. Apidologie 19:241–244

    Article  Google Scholar 

  • de Miranda JR, Bailey L, Ball BV et al (2013) Standard methods for virus research in Apis mellifera. J Apic Res 52:1–56. https://doi.org/10.3896/IBRA.1.52.4.22

    Article  CAS  Google Scholar 

  • Decandido R, Allen D, Yosef KR et al (2004) A comparison of spring migration phenology of bee-eaters and oriental honey-buzzards Pernis ptilorhyncus at Tanjung Tuan, Malaysia, 2000-01. Ardea 92:169–174

    Google Scholar 

  • Delfinado MD, Baker EW (1961) Tropilaelaps, a new genus of mite from the Philippines (Laelaptidae (s. Lat.): Acarina). Chicago Nat. Hist. Museum

    Google Scholar 

  • Delfinado MD, Baker EW (1974) Varroidae, a new family of mites on honey bees (Mesostigmata: Acarina). J Wash Acad Sci 64:4–10

    Google Scholar 

  • Delfinado-Baker M, Aggarwal K (1987) A new Varroa (Acari: Varroidae) from the nest of Apis cerana (Apidae). Int J Acarol 13:233–237

    Article  Google Scholar 

  • Delfinado-Baker M, Baker EW (1982) A new species of Tropilaelaps parasitic on honey bees. Am Bee J 122:416–417

    Google Scholar 

  • Delfinado-Baker M, Baker EW, Phoon ACG (1989) Mites (Acari) associated with bees (Apidae) in Asia, with description of a new species. Am Bee J 129:609–613

    Google Scholar 

  • Eckert JE (1961) Acarapis mites of the honey bee Apis mellifera L. J Insect Pathol 3:409–425

    Google Scholar 

  • Eickwort GC (1990) Biogeography and taxonomy of honey bees. Am Entomol 36:58–59

    Article  Google Scholar 

  • Flores JM, Spivak M, GutiĂ©rrez I (2005) Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Vet Microbiol 108:141–144. https://doi.org/10.1016/j.vetmic.2005.03.005

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2014) FAOSTAT, Rome. http://faostat.fao.org

  • Forsgren E, de Miranda JR, Isaksson M et al (2009) Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Exp Appl Acarol 47(2):87–97. https://doi.org/10.1007/s10493-008-9204-4

    Article  PubMed  CAS  Google Scholar 

  • Forsgren E, Wei S, Guiling D et al (2015) Preliminary observations on possible pathogen spill-over from Apis mellifera to Apis cerana. Apidologie 46:265–275. https://doi.org/10.1007/s13592-014-0320-3

    Article  CAS  Google Scholar 

  • Friedmann H, Kern J (1956) The problem of cerophagy or wax-eating in the honey-guides. Q Rev Biol 31:19–30

    Article  CAS  Google Scholar 

  • Fries I (1988) Infectivity and multiplication of Nosema apis Z. in the ventriculus of the honey bee. Apidologie 19(3):319–328. https://doi.org/10.1051/apido:19880310

    Article  Google Scholar 

  • Fries I (1993) Nosema apis—a parasite in the honey bee colony. Bee World 74:5–19. https://doi.org/10.1080/0005772X.1993.11099149

    Article  Google Scholar 

  • Fries I, Feng F, da Silva A et al (1996a) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365. https://doi.org/10.1016/S0932-4739(96)80059-9

    Article  Google Scholar 

  • Fries I, Wei H, Wei S et al (1996b) Grooming behavior and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica. Apidologie 27:3–12

    Article  Google Scholar 

  • Fries I, Hansen H, Imdorf A, Rosenkranz P (2003) Swarming in honey bees (Apis mellifera) and Varroa mite (Varroa destructor) population development in Sweden. Apidologie 34:1–9

    Article  Google Scholar 

  • Fries I, Chauzat M-P, Chen Y-P et al (2013) Standard methods for Nosema research. J Apic Res 52:1–28. https://doi.org/10.3896/IBRA.1.52.1.14

    Article  Google Scholar 

  • Fuchs S, Long L, Anderson D (2000) A scientific note on the genetic distinctness of Varroa mites on Apis mellifera L. and on Apis cerana Fabr. in North Vietnam. Apidologie 31:456–460

    Article  Google Scholar 

  • Garcia-Gonzalez E, Genersch E (2013) Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis. Environ Microbiol 15:2894–2901

    PubMed  CAS  Google Scholar 

  • Garg R, Sharma OP, Dogra GS (1984) Formic acid: an effective acaricide against Tropilaelaps clareae Delfinado and Baker (Laelaptidae: Acarina) and its effect on the brood and longevity of honey bees. Am Bee J 124:736–738

    Google Scholar 

  • Garrido C, Rosenkranz P, Paxton RJ et al (2003) Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34:535–541. https://doi.org/10.1051/apido:2003041

    Article  Google Scholar 

  • Gatehouse HS, Malone LA (1999) Genetic variability among Nosema apis isolates. J Apic Res 38:79–85

    Article  Google Scholar 

  • Genersch E (2010) American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol 103:S10–S19. https://doi.org/10.1016/j.jip.2009.06.015

    Article  PubMed  Google Scholar 

  • Gerson U, Dag A, Efrat C, Slabezki Y et al (1994) Tracheal mite, Acarapis woodi, comes to Israel. Israel Am Bee J 134:486

    Google Scholar 

  • Haddad NJ (2014) First detection of Nosema ceranae in Jordan. Eur Sci 10(33):1857–7881

    Google Scholar 

  • Hasemann L (1961) How long can spores of American foulbrood live? Am Bee J 101:298–299

    Google Scholar 

  • Heath LAF (1982) Chalk brood pathogens: a review. Bee World 63:130–135

    Article  Google Scholar 

  • Heath LAF (1985) Occurrence and distribution of chalkbrood disease of honeybees. Bee World 66:9–15. https://doi.org/10.1080/0005772X.1985.11098816

    Article  Google Scholar 

  • Hedtke K, Jensen PM, Jensen AB et al (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108:167–173. https://doi.org/10.1016/j.jip.2011.08.006

    Article  PubMed  Google Scholar 

  • Hitchcock JD, Christensen M (1972) Occurrence of chalkbrood (Ascosphaera apis) in honey bees in the United States. Mycologia 64:1193–1198

    Article  Google Scholar 

  • Hoppe H, Ritter W, Stephen EWC (1989) The control of parasitic bee mites Varroa jacobsoni, Acarapis woodi and Tropilaelaps clareae with formic acid. Am Bee J 129:739–742

    Google Scholar 

  • Huang W, Jiang J, Chen Y et al (2007) A Nosema ceranae isolate from the honey bee Apis mellifera. Apidologie 38:30–37. https://doi.org/10.1051/apido:2006054

    Article  Google Scholar 

  • Huang W-F, Solter LF, Yau PM et al (2013) Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog 9:e1003185. https://doi.org/10.1371/journal.ppat.1003185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter W, Ellis J, vanEngelsdorp D et al (2010) Large-scale field application of RNAi technology reducing Israeli Acute Paralysis Virus disease in honey bees (Apis mellifera, hymenoptera: Apidae). PLoS Pathog 6:e1001160. https://doi.org/10.1371/journal.ppat.1001160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibay LA (1989) Biology of the two external Acarapis species of honey bees: Acarapis Dorsalis Morgenthaler and Acarapis Externus Morgenthaler (Acari: Tarsonemidae). Am Bee J 129:816

    Google Scholar 

  • Ken T, Hepburn HR, Radloff SE et al (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495. https://doi.org/10.1007/s00114-005-0026-5

    Article  PubMed  CAS  Google Scholar 

  • Khongphinitbunjong K, de Guzman LI, Burgett MD et al (2012) Behaviour response underpinning resistance and susceptibility of honey bees to Tropilaelaps mercedesae. Apidologie 43(5):590–599

    Article  Google Scholar 

  • Khongphinitbunjong K, de Guzman LI, Rinderer TE et al (2016) Responses of Varroa-resistant honey bees (Apis mellifera L.) to deformed wing virus. J Asia Pac Entomol 19:921–927. https://doi.org/10.1016/j.aspen.2016.08.008

    Article  Google Scholar 

  • Klee J, Besana AM, Genersch E et al (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10. https://doi.org/10.1016/j.jip.2007.02.014

    Article  PubMed  Google Scholar 

  • Koeniger N, Koeniger G, De Guzman LI et al (1993) Survival of Euvarroa sinhai Delfinado and Baker (Acari, Varroidae) on workers of Apis cerana Fabr, Apis florea Fabr and Apis mellifera L in cages. Apidologie 24:403–410

    Article  Google Scholar 

  • Koeniger G, Koeniger N, Anderson DL et al (2002) Mites from debris and sealed brood cells of Apis dorsata colonies in Sabah (Borneo) Malaysia, including a new haplotype of Varroa jacobsoni. Apidologie 33:15–24

    Article  Google Scholar 

  • Kojima Y, Toki T, Morimoto T et al (2011) Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan. Microb Ecol 62:895–906. https://doi.org/10.1007/s00248-011-9947-z

    Article  PubMed  Google Scholar 

  • Kongpitak P, PolgĂ¡r G, Heine J et al (2008) The efficacy of Bayvarol® and Check Mite® in the control of Tropilaelaps mercedesae in the European honey bee (Apis mellifera) in Thailand. Apıacta 43:12–16

    Google Scholar 

  • Kumar NR, Kumar R, Mbaya J et al (1993) Tropilaelaps-clareae found on Apis mellifera in Africa. Bee World 74:101–102

    Article  Google Scholar 

  • Laigo FM, Morse RA (1968) The mite Tropilaelaps clareae in Apis dorsata colonies in the Philippines. Bee World 49:116–118

    Article  Google Scholar 

  • Lanzi G, de Miranda JR, Boniotti MB et al (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.) J Virol 80:4998–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qin H, Wu J, Sadd BM et al (2012a) The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China. PLoS One 7:e47955. https://doi.org/10.1371/journal.pone.0047955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Chen H, Tang J et al (2012b) Characterization of nociceptive responses to bee venom-induced inflammation in neonatal rats. Brain Res 1472:54–62. https://doi.org/10.1016/j.brainres.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  • Lin RH, Sullivan J, Huang ZY (2001) Earlier foraging in Nosema-infected honey bee workers: are host Corpora allata needed. In: Abstract # D0616. Entomol Soc Am meeting abstracts. http://esa.confex.com/esa/2001/techprogram/programs.htm. Accessed 29 Sept 2017

  • Liu TP (1991) Virus-like particles in the tracheal mite Acarapis woodi (Rennie). Apidologie 22:213–219

    Article  Google Scholar 

  • Liu ZL, Ho SH (1999) Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J Stored Prod Res 35:317–328. https://doi.org/10.1016/S0022-474X(99)00015-6

    Article  Google Scholar 

  • Liu H, Pan G, Song S, Xu J et al (2008) Multiple rDNA units distributed on all chromosomes of Nosema bombycis. J Invertebr Pathol 99:235–238. https://doi.org/10.1016/j.jip.2008.06.012

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Gloag RS, Anderson DL, Oldroyd BP (2010) A molecular phylogeny of the genus Apis suggests that the giant Honeybee of the Philippines, A. breviligula Maa, and the plains Honeybee of southern India, A. indica Fabricius, are valid species. Syst Entomol 35(2):226–233

    Article  Google Scholar 

  • Locke B (2016) Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47:467–482. https://doi.org/10.1007/s13592-015-0412-8

    Article  Google Scholar 

  • Mahmood R, Wagchoure ES, Raja S (2011) Effect of thymol and formic acid against ectoparasitic brood mite Tropilaelaps clareae in Apis mellifera colonies. Pak J Zool 43:91–95

    CAS  Google Scholar 

  • Mahmood R, Wagchoure ES, Ul Mohsin A et al (2012) Control of ectoparasitic mites in honeybee (Apis mellifera L.) colonies by using thymol and oxalic acid. Pak J Zool 44:985–989

    Google Scholar 

  • Martin S (1998) A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecol Model 109:267–281. https://doi.org/10.1016/S0304-3800(98)00059-3

    Article  Google Scholar 

  • Martin S, Holland K, Murray M (1997) Non-reproduction in the honeybee mite Varroa jacobsoni. Exp Appl Acarol 21:539–549

    Article  Google Scholar 

  • Martin SJ, Kemp D (1997) Average number of reproductive cycles performed by Varroa jacobsoni in honey bee (Apis mellifera) colonies. J Apic Res 36:113–123

    Article  Google Scholar 

  • Martin SJ, Highfield AC, Brettell L et al (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306

    Article  CAS  Google Scholar 

  • MartĂ­n-HernĂ¡ndez R, BotĂ­as C, Barrios L et al (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612. https://doi.org/10.1007/s00436-011-2292-9

    Article  PubMed  Google Scholar 

  • Matheson A (1993) World bee health report. Bee World 74:176–212. https://doi.org/10.1080/0005772X.1993.11099183

    Article  Google Scholar 

  • Mathpal Y (1984) Prehistoric rock paintings of bhimbetka. Abhinav Publications, New Delhi

    Google Scholar 

  • Matsuura M (1988) Ecological study on vespine wasps (Hymenoptera:Vespidae) attacking honeybee colonies: I. seasonal changes in the frequency of visits to apiaries by vespine wasps and damage inflicted, especially in the absence of artificial protection. Appl Entomol Zool 23(4):428–440. https://doi.org/10.1303/aez.23.428

    Article  Google Scholar 

  • Meikle WG, Sammataro D, Neumann P et al (2012) Challenges for developing pathogen-based biopesticides against Varroa destructor (Mesostigmata: Varroidae). Apidologie 43:501–514. https://doi.org/10.1007/s13592-012-0118-0

    Article  Google Scholar 

  • Michael DS (1957) Acarine disease found in India. Am Bee J 97:100

    Google Scholar 

  • Milne PS (1957) Acarine disease in Apis indica. Bee World 38:156. https://doi.org/10.1080/0005772X.1957.11094995

    Article  Google Scholar 

  • Mookhploy W, Kimura K, Disayathanoowat T et al (2015) Capsid gene divergence of Black Queen Cell Virus isolates in Thailand and Japan honey bee species. J Econ Entomol 108:1460–1464. https://doi.org/10.1093/jee/tov102

    Article  PubMed  Google Scholar 

  • Mossadegh MS (1990) In vitro observations on ontogenesis of the mite, Euvarroa Sinhai Delfinado & Baker (Acari: Varroidae), in drone brood cells of the honeybee, Apis mellifera L. J Apic Res 29:230–232. https://doi.org/10.1080/00218839.1990.11101224

    Article  Google Scholar 

  • Mossadegh MS, Bahreini R (1994) Acarapis mites of honey-bee, Apis mellifera in Iran. Exp Appl Acarol 18:503–506. https://doi.org/10.1007/BF00051472

    Article  Google Scholar 

  • Munoz I, Garrido-Bailon E, Martin-Hernandez R et al (2008) Genetic profile of Varroa destructor infesting Apis mellifera iberiensis colonies. J Apic Res 47(4):310–313

    Article  Google Scholar 

  • Murray KD, Aronstein KA, de LeĂ³n JH (2007) Analysis of pMA67, a predicted rolling-circle replicating, mobilizable, tetracycline-resistance plasmid from the honey bee pathogen, Paenibacillus larvae. Plasmid 58:89–100. https://doi.org/10.1016/j.plasmid.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • National Bureau of Agricultural Commodity and Food Standards (2008) Diagnosis of American foulbrood in bee. National Thai Agricultural Standard TAS 10351-2007, Royal Gazette Vol. 125 Special Section 3 D, 4 January B.E.2551. p 16

    Google Scholar 

  • Navajas M, Anderson DL, de Guzman LI et al (2010) New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41:181–193

    Article  CAS  Google Scholar 

  • Oldroyd B, Wongsiri S (2006) Asian honey bees: biology, conservation, and human interactions. Harvard University Press, London

    Google Scholar 

  • Oldroyd BP, Wongsiri S, Seeley TD, Siriwat W (2006) Asian honey bees. (alk. paper) edn. Harvard University Press, Cambridge

    Google Scholar 

  • Ono M, Okada I, Sasaki M (1987) Heat production by balling in the Japanese honeybee, Apis cerana japonica as a defensive behavior against the hornet, Vespa simillima xanthoptera (Hymenoptera: Vespidae). Experientia 43:1031–1034. https://doi.org/10.1007/BF01952231

    Article  Google Scholar 

  • Otis GW, Kralj J (2001) Parasitic mites not present in North America. In: Webster TC, Delaplane KS (eds) Mites of the honey bee. Dadant, Hamilton, pp 251–272

    Google Scholar 

  • Oudemans AC (1904) On a new genus and species of parasitic Acari. Notes Leyden Mus 24(4):216–222

    Google Scholar 

  • Peng YS, Fang Y, Xu S et al (1987) The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. J Invertebr Pathol 49:54–60. https://doi.org/10.1016/0022-2011(87)90125-X

    Article  Google Scholar 

  • Pernal SF, Clay H (2013) Honey bee diseases and pests. Canadian Association of Professional Apiculturists, Beaverlodge, AB, p 68

    Google Scholar 

  • Pettis JS et al (2013) A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laelapidae) detection. J Econ Entomol 106:1535–1544

    Article  PubMed  Google Scholar 

  • Qin X, Evans JD, Aronstein KA et al (2006) Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Mol Biol 15:715–718. https://doi.org/10.1111/j.1365-2583.2006.00694.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raffique MK, Mahmood R, Aslam M, Sarwar G (2012) Control of Tropilaelaps clareae mite by using formic acid and thymol in honey bee Apis mellifera L. colonies. Pak J Zool 44:1129–1135

    Google Scholar 

  • Ramsey SD (2018) Elucidation of novel nutritional, developmental, and behavioural adaptations for host exploitation in the mesostigmatid honey bee parasite Varroa destructor, Doctoral Dissertation, University of Maryland College Park, US

    Google Scholar 

  • Rashad SE, Eweis MA, Nour ME (1985) Studies on the infestation of honeybees (Apis mellifera) by Acarapis woodi in Egypt. pp 152–156

    Google Scholar 

  • Reynaldi FJ, LĂ³pez AC, Albo GN et al (2003) Differentiation of Ascosphaera apis isolates by rep-PCR fingerprinting and determination of chalkbrood incidence in Argentinean honey samples. J Apic Res 42:68–76. https://doi.org/10.1080/00218839.2003.11101096

    Article  CAS  Google Scholar 

  • Rice RN (2001) Nosema disease in honeybees: genetic variation and control. RIRDC

    Google Scholar 

  • Rosenkranz P, Kirsch R, Renz R (2006) Population dynamics of honey bee colonies and varroa tolerance: a comparison between Uruguay and Germany 7th Encontro sobre Abelhas, USP, RibeirĂ£o Preto, Brazil

    Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103(Suppl 1):S96–S119. https://doi.org/10.1016/j.jip.2009.07.016

    Article  PubMed  Google Scholar 

  • Royce LA, Krantz GW, Ibay LA et al (1988) Some observations on the biology and behavior of Acarapis woodi and Acarapis dorsalis in Oregon Africanized honey bees and bee mites/editors, Glen R Needham [et al]

    Google Scholar 

  • Sammataro D, Yoder J (2011) Global status of honey bee mites. In: Honey bee colony health: challenges and sustainable solutions. Contemporary topics in entomology. CRC Press, Boca Raton, pp 37–54

    Chapter  Google Scholar 

  • Sanpa S, Chantawannakul P (2009) Survey of six bee viruses using RT-PCR in Northern Thailand. J Invertebr Pathol 100:116–119

    Article  CAS  PubMed  Google Scholar 

  • Shaw KE, Davidson G, Clark SJ et al (2002) Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biol Control 24:266–276. https://doi.org/10.1016/S1049-9644(02)00029-4

    Article  Google Scholar 

  • Singh S (1961) Appearance of American foulbrood disease in Indian honeybee (Apis cerana indica Fabr.) Indian Bee J 27:46–50

    Google Scholar 

  • Solignac M et al (2005) The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc Biol Sci 272:411–419. https://doi.org/10.1098/rspb.2004.2853

    Article  PubMed  PubMed Central  Google Scholar 

  • Steche W (1985) Revision of Zander & Bottcher. Nosematose. In: Krankheiten der Biene, Handbuch der Bienenkunde

    Google Scholar 

  • Strauss U, Pirk CWW, Crewe RM et al (2015) Impact of Varroa destructor on honeybee (Apis mellifera Scutellata) colony development in South Africa. Exp Appl Acarol 65:89–106. https://doi.org/10.1007/s10493-014-9842-7

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu D, Morinishi K, Arai R, Sakamoto A, Okura M, Osaki M (2014) Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol 171:221–226

    Article  CAS  PubMed  Google Scholar 

  • Thapa R, Wongsiri S (2003) Flying predators of the giant honey bees; Apis dorsata and Apis laboriosa in Nepal. Am Bee J 143:540–542

    Google Scholar 

  • Thapa R, Wongsiri S, Manandhar DN (2000) Current status of predators and diseases of honey bees in Nepal. In: Wongsiri S (ed) 7th IBRA and 5th AAA conf. Chiang Mai, Thailand, 2000. International Bee Research Association, Cardiff

    Google Scholar 

  • Theantana T, Chantawannakul P (2008) Protease and β-N-acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis. J Apic Res 47:68–76. https://doi.org/10.1080/00218839.2008.11101426

    Article  CAS  Google Scholar 

  • Traiyasut P, Mookhploy W, Kimura K et al (2016) First detection of honey bee viruses in wax moth. Chiang Mai J Sci 43:695–698

    CAS  Google Scholar 

  • Tsevegmid K, Neumann P, Yañez O (2016) The honey bee pathosphere of Mongolia: European viruses in Central Asia. PLoS One 11:e0151164. https://doi.org/10.1371/journal.pone.0151164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tutkun E, Maden S, Inci A et al (1993) General situation of chalkbrood disease in honeybees in Turkey. Turk Entomol Derg 17(2):65–68

    Google Scholar 

  • van der Zee R, Pisa L, Andonov S et al (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J Apic Res 51:100–114. https://doi.org/10.3896/IBRA.1.51.1.12

    Article  Google Scholar 

  • Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour (No. 639.089 W34). UNSW Press, Sydney

    Google Scholar 

  • Warrit N, Deborah Roan S, Chariya L (2006) Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37:19–30

    Article  CAS  Google Scholar 

  • Whitaker J, Szalanski AL, Kence M (2011) Molecular detection of Nosema ceranae and N. apis from Turkish honey bees. Apidologie 42:174–180. https://doi.org/10.1051/apido/2010045

    Article  Google Scholar 

  • White GF (1913) Sacbrood, a disease of bees. US Department of Agriculture, Bureau of Entomology, Washington, DC

    Google Scholar 

  • Williams GR, Sampson MA, Shutler D et al (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in Western honey bees (Apis mellifera)? J Invertebr Pathol 99:342–344. https://doi.org/10.1016/j.jip.2008.04.005

    Article  PubMed  CAS  Google Scholar 

  • Williams GR, Shutler D, Little CM et al (2011) The microsporidian Nosema ceranae, the antibiotic Fumagilin-B®, and Western honey bee, Apis mellifera colony strength. Apidologie 42(1):15–22

    Article  CAS  Google Scholar 

  • Wongsiri S, Thapa R, Chantawannakul P et al (2005) Bee eating birds and honey bee predation in Thailand. Am Bee J 145:419–422

    Google Scholar 

  • Woyke J (1984) Survival and prophylactic control of Tropilaelaps clareae infesting Apis mellifera colonies in Afghanistan. Apidologie 15:421–434

    Article  Google Scholar 

  • Woyke J (1985) Further investigations into control of the parasite bee mite Tropilaelaps clareae without medication. J Apic Res 24:250–254. https://doi.org/10.1080/00218839.1985.11100681

    Article  Google Scholar 

  • Woyke J (1987) Length of stay of the parasitic mite Tropilaelaps clareae outside sealed honeybee brood cells as a basis for its effective control. J Apic Res 26:104–109

    Article  Google Scholar 

  • Wu J, Li J, Li JK (2006) Major honey plants and their utilization in China. Am Bee J 2:153–157

    Google Scholar 

  • Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 102:7470–7475. https://doi.org/10.1073/pnas.0501860102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang B, Peng G, Li T, Kadowaki T (2013) Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol 3:298–311. https://doi.org/10.1002/ece3.464

    Article  PubMed  PubMed Central  Google Scholar 

  • Yen DF, Chyn LC (1971) Studies on a bacterial disease of honey bee in Taiwan. Plant Prot Bull 13:12–17

    Google Scholar 

  • Yoo KH, Lee Y, Gretzel U et al (2009) Trust in travel-related consumer generated media. In: Hopken W, Gretzel U, Law R (eds) Information and communication technologies in tourism 2009. Springer, New York, p 49e6

    Google Scholar 

  • Yoshiyama M, Kimura K (2011) Distribution of Nosema ceranae in the European honeybee, Apis mellifera in Japan. J Invertebr Pathol 106:263–267. https://doi.org/10.1016/j.jip.2010.10.010

    Article  PubMed  CAS  Google Scholar 

  • Zander E (1909) Tierische Parasiten als Krankenheitserreger bei der Biene. MĂ¼nch Bienenzeitung 31:196–204

    Google Scholar 

  • Zhang X, He SY, Evans JD, Pettis JS, Yin GF, Chen YP (2012) New evidence that deformed wing virus and black queen cell virus are multi-host pathogens. J Invertebr Pathol 109:156–159. https://doi.org/10.1016/j.jip.2011.09.010

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Anderson D, Huang ZSH et al (2004) Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China. Apidologie 35:645–654

    Article  CAS  Google Scholar 

  • Zioni N, Soroker V, Chejanovsky N (2011) Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417:106–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

PC would like to acknowledge Thailand research fund ((RSA6080028) and Chiang Mai University fund. SR would like to acknowledge funding provided by the vanEngelsdorp lab at the University of Maryland and the encouragement/support of Dr. Dennis vanEngelsdorp.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chantawannakul, P., Ramsey, S. (2018). The Overview of Honey Bee Diversity and Health Status in Asia. In: Chantawannakul, P., Williams, G., Neumann, P. (eds) Asian Beekeeping in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-10-8222-1_1

Download citation

Publish with us

Policies and ethics