Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1054))

Abstract

Macrofibrils are the main structural component of the hair cortex, and are a composite material in which trichokeratin intermediate filaments (IFs) are arranged as organised arrays embedded in a matrix composed of keratin-associated proteins (KAPs) and keratin head groups. Various architecture of macrofibrils is possible, with many having a central core around which IFs are helically arranged, an organisation most accurately described as a double-twist arrangement. In this chapter we describe the architecture of macrofibrils and then cover their formation, with most of the material focusing on the theory that the initial stages of macrofibril formation are as liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horio, M., & Kondo, T. (1953). Crimping of wool fibers. Textile Research Journal, 23(6), 373–387.

    Article  CAS  Google Scholar 

  2. Swift, J. A. (1977). The histology of keratin fibers. In R. S. Asquith (Ed.), Chemistry of natural protein fibers (pp. 81–146). London: Wiley.

    Chapter  Google Scholar 

  3. Rogers, G. E. (1959). Electron microscopy of wool. Journal of Ultrastructure Research, 2(3), 309–330.

    Article  CAS  PubMed  Google Scholar 

  4. Harland, D. P., et al. (2011). Arrangement of trichokeratin intermediate filaments and matrix in the cortex of Merino wool. Journal of Structural Biology, 173, 29–37.

    Article  CAS  PubMed  Google Scholar 

  5. Whiteley, K. J., & Kaplin, I. J. (1977). The comparative arrangement of microfibrils in ortho, meso, and paracortical cells of Merino wool fibres. Journal of the Textile Institute, 68(11), 384–386.

    Article  Google Scholar 

  6. Bryson, W. G., et al. (2009). Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair. Journal of Structural Biology, 166(1), 46–58.

    Article  PubMed  Google Scholar 

  7. Harland, D. P., et al. (2014). Three-dimensional architecture of macrofibrils in the human scalp hair cortex. Journal of Structural Biology, 185(3), 397–404.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, A., et al. (2012). Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibres of similar diameter. Journal of Agricultural & Food Chemistry, 60(10), 2434–2446.

    Article  CAS  Google Scholar 

  9. Woods, J. L., et al. (2011). Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus). Journal of Morphology, 272(1), 34–49.

    Article  CAS  PubMed  Google Scholar 

  10. Caldwell, J. P., et al. (2005). The three-dimensional arrangement of intermediate filaments in Romney wool cortical cells. Journal of Structural Biology, 151(3), 298–305.

    Article  CAS  PubMed  Google Scholar 

  11. Neville, A. C. (1993). Biology of fibrous composites: Development beyond the cell membrane (1st ed.). New York: Cambridge University Press. 214.

    Book  Google Scholar 

  12. Harland, D. P., Vernon, J. A., Woods, J. L., Nagase, S., Itou, T., Koike, K., Scobie, D. A., Grosvenor, A. J., Dyer, J. M., & Clerens, S. (2018). Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. The Journal of Experimental Biology , 221(6), jeb172312.

    Article  PubMed  Google Scholar 

  13. Rogers, G. E. (1964). Structural and biochemical features of the hair follicle. In W. Montagna & W. C. Lobitz (Eds.), The epidermis (pp. 179–236). New York: Academic.

    Chapter  Google Scholar 

  14. Orwin, D. F. G., Thomson, R. W., & Flower, N. E. (1973). Plasma membrane differentiations of keratinizing cells of the wool follicle (2. desmosomes). Journal of Ultrastructure Research, 45, 15–29.

    Article  CAS  PubMed  Google Scholar 

  15. Roth, S. I., & Helwig, E. B. (1964). The cytology of the cuticle of the cortex, the cortex, and the medulla of the mouse hair. Journal of Ultrastructure Research, 11, 52–67.

    Article  CAS  PubMed  Google Scholar 

  16. Birbeck, M. S. C., & Mercer, E. H. (1957). The electron microscopy of the human hair follicle. Part1. Introduction and the hair cortex. Journal of Biophysical and Biochemical Cytology, 3, 203–213.

    Article  CAS  PubMed  Google Scholar 

  17. Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.

    Article  CAS  PubMed  Google Scholar 

  18. Morioka, K. (2005). Hair follicle, differentiation under the electron microscope – an atlas. Tokyo: Springer. 152.

    Google Scholar 

  19. Langbein, L., & Schweizer, J. (2005). Keratins of the human hair follicle. International Review of Cytology, 243, 1–78.

    Article  CAS  PubMed  Google Scholar 

  20. McKinnon, A. J., Harland, D. P., & Woods, J. L. (2016). Relating self-assembly to protein expression in wool cortical cells. Journal of Textile Engineering, 62(6), 123–128.

    Article  Google Scholar 

  21. Wang, H., et al. (2000). In vitro assembly and structure of trichocyte keratin intermediate filaments: A novel role for stabilization by disulfide bonding. Journal of Cell Biology, 151(7), 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  22. Paton, L. N. (2005). Proteomic analysis of wool intermediate filament proteins. Christchurch: School of Biological Sciences, University of Canterbury.

    Google Scholar 

  23. Jones, L. N., & Pope, F. M. (1985). Isolation of intermediate filament assemblies from human hair follicles. Journal of Cell Biology, 101(4), 1569–1577.

    Article  CAS  PubMed  Google Scholar 

  24. Matsunaga, R., et al. (2013). Bidirectional binding property of high glycine–tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. Journal of Structural Biology, 183(3), 484–494.

    Article  CAS  PubMed  Google Scholar 

  25. Fraser, R. D. B., Rogers, G. E., & Parry, D. A. D. (2003). Nucleation and growth of macrofibrils in trichocyte (hard-α) keratins. Journal of Structural Biology, 143, 85–93.

    Article  CAS  Google Scholar 

  26. McKinnon, A. J., & Harland, D. P. (2011). A concerted polymerization-mesophase separation model for formation of trichocyte intermediate filaments and macrofibril templates 1: Relating phase separation to structural development. Journal of Structural Biology, 173(2), 229–240.

    Article  CAS  PubMed  Google Scholar 

  27. Parry, D. A., et al. (2007). Towards a molecular description of intermediate filament structure and assembly. Experimental Cell Research, 313(10), 2204–2216.

    Article  CAS  PubMed  Google Scholar 

  28. Sokolova, A. V., et al. (2006). Monitoring intermediate filament assembly by small-angle X-ray scattering reveals the molecular architecture of assembly intermediates. Proceedings of the National Academy of Science of USA, 103, 16206–16211.

    Article  CAS  Google Scholar 

  29. Franke, W. W., Schiller, D. L., & Grund, C. (1982). Protofilamentous and annular structures as intermediates during reconstitution of cytokeratin filaments in vitro. Biology of the Cell, 46, 257–268.

    Google Scholar 

  30. Herrmann, H., et al. (2002). Characterisation of early assembly intermediates of recombinant human keratins. Journal of Structural Biology, 137, 82–96.

    Article  CAS  PubMed  Google Scholar 

  31. Kirmse, R., et al. (2010). Plasticity of intermediate filament subunits. PLoS One, 5(8), e12115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Portet, S., et al. (2009). Vimentin intermediate filament formation: In vitro measurement and mathematical modeling of the filament length distribution during assembly. Langmuir, 25(15), 8817–8823.

    Article  CAS  PubMed  Google Scholar 

  33. Fraser, B. R. D., & Parry, D. A. D. (2003). Macrofibril assembly in trichocyte (hard α-) keratins. Journal of Structural Biology, 142(2), 319–325.

    Article  CAS  Google Scholar 

  34. McKinnon, A. J. (2006). The self-assembly of keratin intermediate filaments into macrofibrils: Is this process mediated by a mesophase? Current Applied Physics, 6, 375–378.

    Article  Google Scholar 

  35. McKinnon, A. J., & Harland, D. P. (2010). The role of liquid-crystalline structures in the morphogenesis of animal fibers. International Journal of Trichology, 2(2), 101–103.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lehmann, O. (1889). Über fliessende Krystalle. In Zeitschrift für Physikalische Chemie (p. 462).

    Google Scholar 

  37. Friedel, G. (1922). Les états mésomorphes de la matière. Annals of Physics, 9(18), 273–474.

    Article  Google Scholar 

  38. Mitov, M. (2014). Liquid-crystal science from 1888 to 1922: Building a revolution. Chemphyschem, 15(7), 1245–1250.

    Article  CAS  PubMed  Google Scholar 

  39. Onsager, L. (1949). The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 51(4), 627–659.

    Article  CAS  Google Scholar 

  40. Bernal, J. D., & Fankuchen, I. (1941). X-ray and crystallographic studies of plant virus preparations. The Journal of General Physiology, 25(1), 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flory, P. J. (1953). Principles of polymer chemistry (1st ed., p. 688). The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University, Ithaca, United States Cornell University Press.

    Google Scholar 

  42. Flory, P. J. (1984). Molecular theory of liquid crystals. Advances in Polymer Science, 59, 1–36.

    Article  CAS  Google Scholar 

  43. Flory, P. J. (1956). Phase equilibria in solutions of rod-like particles. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 234(1196), 73.

    Article  CAS  Google Scholar 

  44. Flory, P. J., & Frost, R. S. (1978). Statistical thermodynamics of mixtures of rodlike particles. 3. The most probable distribution. Macromolecules, 11(6), 1126–1133.

    Article  CAS  Google Scholar 

  45. Brown, A. I., Kreplak, L., & Rutenberg, A. D. (2014). An equilibrium double-twist model for the radial structure of collagen fibrils. Soft Matter, 10(42), 8500–8511.

    Article  CAS  PubMed  Google Scholar 

  46. Bouligand, Y. (2008). Liquid crystals and biological morphogenesis: Ancient and new questions. Comptes Rendus Chimie, 11(3), 281–296.

    Article  CAS  Google Scholar 

  47. Flory, P. J., & Leonard, W. J. (1965). Thermodynamic properties of solutions of helical polypeptides. Journal of the American Chemical Society, 87(10), 2102–2108.

    Article  CAS  Google Scholar 

  48. Sato, T., & Teramoto, A. (1996). Concentrated solutions of liquid-crystalline polymers. Advances in Polymer Science, 126, 85–161.

    Article  CAS  Google Scholar 

  49. Parry, D. A. D. (1990). Primary and secondary structure of IF protein chains and modes of molecular aggregation. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 175–204). New York: Plenum.

    Chapter  Google Scholar 

  50. Parry, D. A. D., & Steinert, P. M. (1999). Intermediate filaments: Molecular architecture, assembly, dynamics and polymorphism. Quarterly Reviews of Biophysics, 32(2), 99–187.

    Article  CAS  PubMed  Google Scholar 

  51. Köster, S., et al. (2015). Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 32, 82–91.

    Article  CAS  PubMed  Google Scholar 

  52. Szeverenyi, I., et al. (2008). The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation, 29(3), 351–360.

    Article  CAS  PubMed  Google Scholar 

  53. Tobolsky, A. V., & Eisenberg, A. (1962). Transition phenomena in equilibrium polymerization. Journal of Colloid Science, 17(1), 49–65.

    Article  CAS  Google Scholar 

  54. Tobolsky, A. V., & Eisenberg, A. (1960). A general treatment of equilibrium polymerization. Journal of the American Chemical Society, 82(2), 289–293.

    Article  Google Scholar 

  55. De Greef, T. F. A., et al. (2009). Supramolecular polymerization. Chemical Reviews, 109(11), 5687–5754.

    Article  CAS  PubMed  Google Scholar 

  56. Douglas, J. F., Dudowicz, J., & Freed, K. F. (2008). Lattice model of equilibrium polymerization. VII. Understanding the role of “cooperativity” in self-assembly. The Journal of Chemical Physics, 128(22), 224901.

    Article  CAS  PubMed  Google Scholar 

  57. Tobolsky, A. V., & MacKnight, W. J. (1965). Polymeric sulfur and related polymers. New York/London: Interscience.

    Google Scholar 

  58. Ishii, D., et al. (2011). Stepwise characterization of the thermodynamics of trichocyte intermediate filament protein supramolecular assembly. Journal of Molecular Biology, 408(5), 832–838.

    Article  CAS  PubMed  Google Scholar 

  59. Yu, Z., et al. (2011). Annotations of sheep keratin intermediate filament genes and their patterns of expression. Experimental Dermatology, 20(7), 582–588.

    Article  CAS  PubMed  Google Scholar 

  60. French, P. W., & Hewish, D. R. (1986). Localization of low-sulfur keratin proteins in the wool follicle using monoclonal antibodies. Journal of Cell Biology, 102(4), 1412–1418.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane P. Harland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harland, D.P., McKinnon, A.J. (2018). Macrofibril Formation. In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_11

Download citation

Publish with us

Policies and ethics