Skip to main content

COPD: Hereditary (A1-AT) and Non-hereditary—What Are the Roles of Genetic Factors in the Pathogenesis of COPD?

  • Chapter
  • First Online:
Clinical Relevance of Genetic Factors in Pulmonary Diseases

Abstract

Although smoking is a considerable risk factor for COPD development, genetic susceptibility is believed to play a key role in the development of COPD. This is because approximately 15% of the smoking population eventually suffer from this disease, while the others sustain normal lungs despite their smoking habit. A well-known causal gene of COPD is the serine protease inhibitor A1 (SERPINA1) gene, which causes hereditary severe α1-antitrypsin (A1-AT) deficiency. After SERPINA1 was identified as causal gene for A1-AT deficiency leading to COPD, many other genes that alter the risk of non-hereditary COPD were identified. Especially, the recent development of the genome-wide association study (GWAS) is a powerful tool to identify hypothesis-free genes. Even though recent studies have revealed more than 100 genes that affect the risk of non-hereditary COPD, the impact of each gene is not very strong, and they usually change the risk of COPD with a risk ratio of between 0.7 and 1.5. Thus, identified genes can explain only a small part of the etiology of COPD. In this chapter, we will review the roles of genetic factors in the pathogenesis of hereditary and non-hereditary COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 Report: GOLD executive summary. Eur Respir J. 2017;49(3)

    Google Scholar 

  2. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370(9589):765–73.

    Article  PubMed  Google Scholar 

  3. Siafakas NM, Vermeire P, Pride NB, et al. Optimal assessment and management of chronic obstructive pulmonary-disease (COPD). Eur Respir J. 1995;8(8):1398–420.

    Article  CAS  PubMed  Google Scholar 

  4. Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225–36.

    Article  CAS  PubMed  Google Scholar 

  5. Visscher PM, Brown MA, McCarthy MI, Yang J. Five Years of GWAS Discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosse Y. Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis. 2012;7:607–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berndt A, Leme AS, Shapiro SD. Emerging genetics of COPD. EMBO Mol Med. 2012;4(11):1144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kruglyak L, Daly MJ, ReeveDaly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996;58(6):1347–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Gu C, Province M, Todorov A, Rao DC. Meta-analysis methodology for combining non-parametric sibpair linkage results: genetic homogeneity and identical markers. Genet Epidemiol. 1998;15(6):609–26.

    Article  CAS  PubMed  Google Scholar 

  10. Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet. 2000;66(6):1945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev. 2002;11(6):505–12.

    PubMed  Google Scholar 

  12. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86(1):6–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu ZL, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37:W600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holme J, Stockley RA. Radiologic and clinical features of COPD patients with discordant pulmonary physiology - lessons from alpha(1)-antitrypsin deficiency. Chest. 2007;132(3):909–15.

    Article  PubMed  Google Scholar 

  15. Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M. Glutathione S-transferase P1 and lung function in patients with alpha(1)-antitrypsin deficiency and COPD. Chest. 2005;127(5):1537–43.

    Article  CAS  PubMed  Google Scholar 

  16. Wood AM, de Pablo P, Buckley CD, Ahmad A, Stockley RA. Smoke exposure as a determinant of autoantibody titre in alpha(1)-antitrypsin deficiency and COPD. Eur Respir J. 2011;37(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  17. Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG. Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med. 2002;136(4):270–9.

    Article  CAS  PubMed  Google Scholar 

  18. Demeo DL, Mariani TJ, Lange C, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu G, Warren L, Aponte J, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. Am J Respir Crit Care Med. 2007;176(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  20. Fujimoto K, Ikeda S, Arai T, et al. Polymorphism of SERPINE2 gene is associated with pulmonary emphysema in consecutive autopsy cases. BMC Med Genet. 2010;11:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakao S, Tatsumi K, Igari H, Shino Y, Shirasawa H, Kuriyama T. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):420–2.

    Article  CAS  PubMed  Google Scholar 

  22. Zhan P, Wang J, Wei SZ, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians: meta-analysis of data for 6,118 subjects. Mol Biol Rep. 2011;38(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  23. Celedon JC, Lange C, Raby BA, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet. 2004;13(15):1649–56.

    Article  CAS  PubMed  Google Scholar 

  24. Wu L, Chau J, Young RP, et al. Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax. 2004;59(2):126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vibhuti A, Arif E, Deepak D, Singh B, Qadar Pasha MA. Genetic polymorphisms of GSTP1 and mEPHX correlate with oxidative stress markers and lung function in COPD. Biochem Biophys Res Commun. 2007;359(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  26. Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009;180(7):618–31.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng SL, Yu CJ, Chen CJ, Yang PC. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23(6):818–24.

    Article  CAS  PubMed  Google Scholar 

  28. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saccone NL, Culverhouse RC, Schwantes-An TH, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6(8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009;85(4):493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Int J Clin Chem. 2006;372(1-2):33–42.

    CAS  Google Scholar 

  33. Horita N, Miyazawa N, Tomaru K, Inoue M, Ishigatsubo Y, Kaneko T. Vitamin D binding protein genotype variants and risk of chronic obstructive pulmonary disease: a meta-analysis. Respirology. 2015;20(2):219–25.

    Article  PubMed  Google Scholar 

  34. Zhou H, Wu Y, Jin Y, et al. Genetic polymorphism of matrix metalloproteinase family and chronic obstructive pulmonary disease susceptibility: a meta-analysis. Sci Rep. 2013;3:2818.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Caporaso N, Gu FY, Chatterjee N, et al. Genome-Wide and Candidate Gene Association study of cigarette smoking behaviors. PLoS One. 2009;4(2):e4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li MD, Ma JZ, Beuten J. Progress in searching for susceptibility loci and genes for smoking-related behaviour. Clin Genet. 2004;66(5):382–92.

    Article  CAS  PubMed  Google Scholar 

  37. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441–7.

    Article  CAS  Google Scholar 

  38. Barnes PJ. Future advances in COPD therapy. Respiration. 2001;68(5):441–8.

    Article  CAS  PubMed  Google Scholar 

  39. Cazzola M, Hanania NA, MacNee W, Rudell K, Hackford C, Tamimi N. A review of the most common patient-reported outcomes in COPD - revisiting current knowledge and estimating future challenges. Int J Chron Obstruct Pulmon Dis. 2015;10:725–38.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Konigshoff M, Kneidinger N, Eickelberg O. TGF-beta signalling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimens. Swiss Med Wkly. 2009;139(39-40):554–63.

    PubMed  Google Scholar 

  41. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horita, N. (2018). COPD: Hereditary (A1-AT) and Non-hereditary—What Are the Roles of Genetic Factors in the Pathogenesis of COPD?. In: Kaneko, T. (eds) Clinical Relevance of Genetic Factors in Pulmonary Diseases. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8144-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8144-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8143-9

  • Online ISBN: 978-981-10-8144-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics