Skip to main content

Mechanical Stimulation in a PCL Additive Manufacturing Scaffold

  • Chapter
  • First Online:
Multiscale Mechanobiology in Tissue Engineering

Part of the book series: Frontiers of Biomechanics ((FB,volume 3))

  • 782 Accesses

Abstract

Three-dimensional (3D) scaffolds are increasingly employed as support for studies on cellular activities. They are widely shown to enhance cell survival and are a promising approach to be employed to mimic the in vivo conditions due to their controlled architecture. Moreover, 3D stiff structures fabricated by additive manufacturing are able to bear mechanical stimuli finding a role in the investigation of the effect of mechanical forces on cell proliferation and commitment. With this purpose, we propose a combination of a 3D polycaprolactone (PCL) scaffold and collagen soft gel as support for studying the response of mesenchymal stem cells following mechanical compression. This chapter focuses on the characterization of 3D Insert® PCL scaffolds behaviour under mechanical compression. After defining mechanical properties and variability due to boundary effects, the focus moves on the development of a new composite scaffold made of a stiff PCL structure acting as support for cell activities and able to bear mechanical compression while embedding a soft collagen gel matrix responsible to provide an environment enhancing cellular activities as well as to transmit the stress resulting from the mechanical stimulation from the stiff matrix to the seeded cells. Finally, the last section focuses on the effect of low mechanical strain applied on seeded scaffolds and how the cellular response varies to bursts of compression applied at different time points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbarisi M et al (2014) Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue. Soc Biomater 103(5):1755–1760

    Article  Google Scholar 

  • Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85

    Article  Google Scholar 

  • Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    Article  Google Scholar 

  • Declercq HA, Desmet T, Berneel EEM, Dubruel P, Cornelissen MJ (2013) Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-Ε-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater 9(8):7699–7708

    Article  Google Scholar 

  • Engler AJ, Sen S, Lee Sweeney H, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  • Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223

    Article  Google Scholar 

  • Ghosh S et al (2008) Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size. Acta Biomater 4(4):950–959

    Article  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  Google Scholar 

  • Hutmacher DW et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  • Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163–1171

    Article  Google Scholar 

  • Lohmann CH, Schwartz Z, Niederauer GG (2000) Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new. Biomaterials 21:49

    Article  Google Scholar 

  • Marino G et al (2012) Growth and endothelial differentiation of adipose stem cells on polycaprolactone. J Biomed Mat Res A 100A(3):543–548

    Article  Google Scholar 

  • O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic: an overview. Tissue Eng Part B Rev 17(6):389–392

    Article  Google Scholar 

  • Odusanya OS, Manan DMA, Ishiaku US, Azemi BMN (2003) Effect of starch predrying on the mechanical properties of starch/poly ( E -Caprolactone ) composites. J Appl Polym Sci 87:877–884

    Article  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  Google Scholar 

  • Slivka, M. A., Leatherbury, N. C., Kieswetter, K., & Niederauer, G. G. (2000). In vitro compression testing of fiber-reinforced, bioabsorbable, porous implants. In Synthetic bioabsorbable polymers for implants. ASTM International

    Google Scholar 

  • Sobral JM, Caridade SG, Sousa R a, Mano JF, Reis RL (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018

    Article  Google Scholar 

  • Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V (2008) 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol Symp 269(1):92–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Lacroix .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunelli, M., Perrault, C., Lacroix, D. (2019). Mechanical Stimulation in a PCL Additive Manufacturing Scaffold. In: Multiscale Mechanobiology in Tissue Engineering. Frontiers of Biomechanics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-8075-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8075-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8074-6

  • Online ISBN: 978-981-10-8075-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics