Skip to main content

Xylooligosaccharides and Their Anticancer Potential: An Update

  • Chapter
  • First Online:

Abstract

Xylooligosaccharides (XOS), which are sugar oligomers that consist of 2–10 units of xylose, are non-digestible food ingredients produced mainly by the hydrolysis of xylan. The production of XOS from agricultural residues serves as a good source of products for the nutraceutical and pharmaceutical industries. XOS have a characteristic prebiotic effect, promoting the growth of probiotic organisms. XOS affect various physiological functions, such as reducing cholesterol levels, maintaining gastrointestinal health, and improving immunity. XOS are also used as potential anticancer agents, mainly for breast cancer and colon cancer. In this chapter we highlight the role of XOS as prebiotics, as well as their role in the suppression of carcinoma cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci 10:2–16

    Article  CAS  Google Scholar 

  • Akpinar O, Erdogan K, Bostanci S (2009) Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod Process 87:145–151

    Article  CAS  Google Scholar 

  • Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, Bakalova R, Uemura Y, Hatate Y (2004) Hot-compressed water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro 18:765–771

    Article  CAS  PubMed  Google Scholar 

  • Blackmores (2015) February 13. Retrieved from http://www.blackmores.com.sg/lifestyletips/articles/let-food-be-thymedicine-and-medicine-be-thy-food

  • Candurra NA, Maskin L, Damonte EB (1996) Inhibition of Arenavirus multiplication in vitro by phenothiazines. Antivir Res 31:149–158

    Article  CAS  PubMed  Google Scholar 

  • Canilha L, de Almeida e Silva JB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with active charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 39:1909–1912

    Article  CAS  Google Scholar 

  • Chandrasekhariah M, Thulasi A, Sampath KT, Prasad CS, Samanta AK, Kolte AP (2007) Prebiotics: the rumen modulator for enhancing the productivity of dairy animals. Indian Dairyman 59:58–61

    Google Scholar 

  • Cipriani TR, Mellinger CG, De Souza LM, Baggio CH, Freitas CS, Marques MC, Gorin PA, Sassaki GL, Iacomini M (2006) A polysaccharide from a tea (infusion) of Maytenus ilicifolia leaves with anti-ulcer protective effects. J Nat Prod 69:1018–1021

    Article  CAS  PubMed  Google Scholar 

  • Crittenden RG (2006) Emerging prebiotic candidates. In: Gibson GR, Rastall RA (eds) Prebiotics: development and application. Wiley, West Sussex

    Google Scholar 

  • Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:S415–S420

    Article  Google Scholar 

  • da Silva AE, Marcelino HR, Gomes MCS, Oliveira EE, Nagashima T Jr, Egito EST (2012) Xylan, a promising hemicellulose for pharmaceutical use, products and applications of biopolymers (Verbeek J (ed)). InTech, Available from: http://www.intechopen.com/books/products-andapplicationsofbiopolymers/xylan-a-promising-hemicellulose-for-pharmaceutical-use. ISBN:978-953-51-0226-7

  • Damonte EB, Matulewicz MC, Cerezo AS, Coto CE (1996) Herpes simplex virus-inhibitory sulfated xylogalactans from the red seaweed Nothogenia fastigiata. Chemotherapy 42:57–64

    Article  CAS  PubMed  Google Scholar 

  • Ebringerova A, Hromadkova Z (1999) Xylans of industrial and biomedical importance. Biotechnol Genet Eng Rev 16:325–346

    Article  CAS  PubMed  Google Scholar 

  • Ensminger AH, Ensminger ME, Kondale JE, Robson JRK (1983) Foods and nutriton encyclopedia. Pegasus Press, Clovis

    Google Scholar 

  • Fang JM, Sun RC, Tomkinson J, Fowler O (2000) Acetylation of wheat straw hemicelluloses B in a new non-aqueous swelling system. Carbohydr Polym 41:379–387

    Article  CAS  Google Scholar 

  • Food that act as natural medicine (2015) February 13. Retrieved from http://www.asiaone.com/print/News/Latest%2BNews/Health/Story/A1Story20121002-374998.html

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:257–259

    Article  CAS  Google Scholar 

  • Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic sub cellular fractions for alamar blue and MTT reductase activity. Toxicol In Vitro 15:259–259

    Article  Google Scholar 

  • Graf D, Di Cagno R, Fak F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:PMC4318938. https://doi.org/10.3402/mehd.v26.26164

    Article  CAS  Google Scholar 

  • Grohmann K, Cameron RG, Buslig BS (1995) Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour Technol 54:129–141

    Article  CAS  Google Scholar 

  • Gupta PK, Agrawal P, Hedge P (2012) A review on xylooligosaccharides. Int Res J Pharm 3:71–74

    CAS  Google Scholar 

  • Gupta PK, Agrawal P, Hedge P (2015) Extraction of xylooligosaccharides by using Aspergillus niger from orange wastes. Int J Pharm Tech Res 7:488–496

    Google Scholar 

  • Gupta PK, Agrawal P, Hedge P (2017) Value addition of orange fruit wastes in the enzymatic production of xylooligosaccharides. Afr J Biotechnol 16:1324–1330

    Article  Google Scholar 

  • Hattori N, Sakakibara T, Kajiyama N, Igarashi T, Maeda M, Murakami S (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal Biochem 319:287–295

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructo-oligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17:770–775

    Article  CAS  Google Scholar 

  • Huebner J, Wehling RL, Parkhurst A, Hutkins RW (2008) Effect of processing conditions on the prebiotic activity of commercial prebiotics. Int Dairy J 18:287–293

    Article  CAS  Google Scholar 

  • Kardosova A, Malovikova A, Patoprsty V, Nosalova G, Matakova T (2002) Structural characterization and antitussive activity of a glucuronoxylan from Mahonia aquifolium (Pursh). Carbohydrate. Polymer 47:27–33

    CAS  Google Scholar 

  • Kitamura S, Hori T, Kurita K, Takeo K, Hara C, Itoh W, Tabata K, Elgsaeter A, Stokked BT (1994) An antitumor, branched (1→3)-β-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr Res 263:111–121

    Article  CAS  PubMed  Google Scholar 

  • Kulicke WM, Lettau AI, Thielking H (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-D-glucans. Carbohydr Res 297:135–143

    Article  CAS  PubMed  Google Scholar 

  • Leach JD (2007) Prebiotics in ancient diets. Food Sci Technol Bull Funct Foods 4:1–8

    Article  Google Scholar 

  • Ma E, Cervera Q, Mejía Sánchez GM (1993) Integrated utilization of orange peel. Bioresour Technol 44:61–63

    Article  CAS  Google Scholar 

  • Maeda R, Ida T, Ihara H, Sakamota T (2012) Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. Biosci Biotechnol Biochem 76:501–505

    Article  CAS  PubMed  Google Scholar 

  • Manisseri C, Gudipati M (2010) Bioactive xylooligosaccharides from wheat bran soluble polysaccharides. LWT-Food Sci Technol 43:421–430

    Article  CAS  Google Scholar 

  • Modler HW (1994) Bifidogenic factors-source, metabolism and applications. Int Dairy J 4:383–407

    Article  Google Scholar 

  • Moure A, Estevez GP, Dominguez H, Parajo JC (2006) Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  CAS  Google Scholar 

  • Nyangale EP, Mottram DS, Gibson GR (2012) Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res 11:5573–5585

    Article  CAS  PubMed  Google Scholar 

  • Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylooligosaccharide on the growth of bifidobacteria. J Jpn Soc Nutr Food Sci 43:395–401

    Article  CAS  Google Scholar 

  • Oku T, Nakamura S (2002) Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl Chem 74:1253–1261

    Article  CAS  Google Scholar 

  • Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    Article  CAS  PubMed  Google Scholar 

  • Rashad MM, Mahmoud AE, Nooman MU, Mahmoud HA, ElTorky AEM, Keshta AT (2016) Production of antioxidant xylooligosaccharides from lignocellulosic materials using Bacillus amyloliquifaciens NRRL B-14393 xylanase. J App Pharm Sci 6(06):030–036

    Google Scholar 

  • Rivas B, Torrado A, Torre P, Converti A, Dominguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liv Dis 34:S105–S110

    Article  Google Scholar 

  • Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Forum Nutr 3:118–134

    CAS  Google Scholar 

  • Samanta AK, Senani S, Kolte AP, Sridhar M, Jayapal N (2010) Applications of prebiotics in poultry. Agrovet Buzz 3:38–42

    Google Scholar 

  • Samanta AK, Kolte AP, Senani SS, Sridhar M, Jayapal N (2011) Prebiotics in ancient Indian diets. Curr Sci 101:43–46

    Google Scholar 

  • Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205

    Article  CAS  PubMed  Google Scholar 

  • Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M. (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre 5(1):62–71

    Article  CAS  Google Scholar 

  • Seidner DL, Lashner BA, Brzezinski A, Banks PL, Goldblum J, Fiocchi C, Katz J, Lichtenstein GR, Anton PA, Kam LY, Garleb KA, Demichele SJ (2005) An oral supplement enriched with fish oil, soluble fiber, and antioxidants for corticosteroid sparing in ulcerative colitis: a randomized, controlled trial. Clin Gastroenterol Hepatol 3:358–369

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228. ISSN 1369-5274

    Article  CAS  PubMed  Google Scholar 

  • Shimoda K, Hamada H, Hamada H (2011) Synthesis of xylooligosaccharides of daidzein and their antioxidant and anti-allergic activities. Int J Mol Sci 12:5616–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sixta H et al. (2006) Chemical pulping process, In: Sixta H (ed) Handbook of pulp, Xylan structure, vol. 1. wileyvch, Yikrazuul, pp 325–365. http://commons.wikimedia.org/wiki/file:xylan_hardwood.svgb

  • Stone AL, Melton DJ, Lewis MS (1998) Structure-function relations of heparin-mimetic sulfated xylan oligosaccharides: inhibition of human immuno deficiency virus-1 infectivity in vitro. Glycoconj J 15:697–712

    Article  CAS  PubMed  Google Scholar 

  • Stowell J (2007) Calorie control and weight management. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell Publishing, Oxford

    Google Scholar 

  • USDA (2010) Nutrient database for standard reference. http://www.nal.usda.gov/fnic/foodcomp/Data/SR19/sr19.html. Accessed 19 Aug 2017

  • Vazquez MJ, Alonso JL, Dominguez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trend Food Sci Technol 11:387–393

    Article  CAS  Google Scholar 

  • Watson K, Gooderham NJ, Davies DS, Edwards RJ (1999) Interaction of the transactivating protein HIV-1 tat with sulphated polysaccharides. Biochem Pharmacol 57:775–783

    Article  CAS  PubMed  Google Scholar 

  • Zhou E, Pan X, Tian X (2009) Application study of xylooligosaccharide in layer production. Mod Appl Sci 3:103–107

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Rashtreeya Sikshana Samithi Trust (RSST) Bangalore for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Praveen Kumar Gupta or Mohd Sayeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P.K., Agrawal, P., Hedge, P., Akhtar, M.S. (2018). Xylooligosaccharides and Their Anticancer Potential: An Update. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Natural Products and Biotechnological Implements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8064-7_11

Download citation

Publish with us

Policies and ethics