Skip to main content

Fungal Endophytes as Novel Sources of Anticancer Compounds

  • Chapter
  • First Online:
Book cover Anticancer Plants: Natural Products and Biotechnological Implements

Abstract

There has been an exponential rise in the world population having numerous health ailments as a result of carcinogens causing cancer. Therefore, newer arenas to combat this issue are being continuously explored, and endophytes constitute one such source of potential anticancer agents. Endophytes are microbes residing in viable plant tissues consisting of potential, substantial sources of natural bioactive agents. Endophytic fungi reside within the tissues of higher plants without causing any harmful symptoms. The anticancer activities displayed by these microbes against specific cancer cells have been due to the cytotoxic effects of their bioactive compounds. These organisms have been comparatively less explored, and their use in the pharmaceutical industry holds significant promise. Fungal endophytes form a reliable source of important secondary metabolites by employment of their biotransformation processes. They employ specific mechanisms by which they penetrate the tissues of host plants and live in mutualistic association with the plants. They can be genetically and physico-chemically modified to obtain higher yields of specific metabolites of interest. Unique analogues of active metabolites can also be generated using fungal endophytes. A critical balance maintained between the virulence by a fungal endophyte and the defence mechanism of the plant, by the release of endophytic metabolites, helps in sustaining its competition with plant pathogens and epiphytes. Therefore, the aim of this chapter is to highlight the new arena of research on fungal endophytes producing novel anticancer metabolites. Insights into this research would ultimately help in the production of safe, reliable and economical anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116

    Article  CAS  PubMed  Google Scholar 

  • Agusta A, Maehara S, Ohashi K, Simanjuntak P, Shibuya H (2005) Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chem Pharm Bull 53:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential biprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98

    Chapter  Google Scholar 

  • Barrios-González J, Fernandez F, Tomasini A, Mejia A (2005) Secondary metabolites production by solid state fermentation. Malays J Microbiol 1:1–6

    Google Scholar 

  • Berit BT, Rolf B (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. BBA Rev Cancer 1775:283–297

    Google Scholar 

  • Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed 46:945–952

    Article  CAS  Google Scholar 

  • Bungihan ME, Tan MA, Takayama H, Cruz DE, Nonato GM (2013) A new macrolide isolated from the endophytic fungus Colletotrichum sp. Phil Sci Lett 6:57–73

    Google Scholar 

  • Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1191–1205

    Article  CAS  Google Scholar 

  • Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Han T, Qin LP, Han T (2016) Endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol 42:454–473

    PubMed  CAS  Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Lactase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  PubMed  Google Scholar 

  • Croce CM (2008) Oncogenes and cancer. New Eng J Med 358:502–511

    Article  CAS  PubMed  Google Scholar 

  • Davis RA, Carroll AR, Andrews KT, Boyle GM, Tran TL, Healy PC, Kalaitzis JA, Shivas RG (2010) Pestalactams A–C: novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8:1785–1790

    Article  CAS  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie und physiologie der plize, Flechten, und Myxomyceten. In: Hofmeister’s hand book of physiological botany, vol 2. Engelmann, Leipzig

    Google Scholar 

  • Deng CM, Liu SX, Huang CH, Pang JY, Lin YC (2013) Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar Drugs 11:2616–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Luccio M, Capra F, Ribeiro NP, Vargas GD, Freire DM, De Oliveira D (2004) Effect of temperature, moisture, and carbon supplementation on lipase production by solid state fermentation of soy cake by Penicillium simplicissimum. Appl Biochem Biotechnol 113:173–180

    Article  PubMed  Google Scholar 

  • Ding G, Wang H, Li L, Chen AJ, Chen L, Chen H, Zhang H, Liu X, Zou Z (2012) Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur J Org Chem 2012:2516–2519

    Article  CAS  Google Scholar 

  • Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Neketi M, Ebrahim W, Lin W, Gedara S, Badria F, Saad HEA, Lai D, Proksch P (2013) Alkaloids and polyketides from Penicillium citrinum, an endophyte isolated from the Moroccan plant Ceratonia siliqua. J Nat Prod 76:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  Google Scholar 

  • Gao SS, Li XM, Li CS, Proksch P, Wang BG (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21:2894–2897

    Article  CAS  PubMed  Google Scholar 

  • Ge HL, Zhang DW, Li L, Xie D, Zou JH, Si YK, Dai J (2011) Two new terpenoids from endophytic fungus Periconia sp. F-31. Chem Pharm Bull 59:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Gulland A (2014) Global cancer prevalence is growing at “alarming pace,” says WHO. BMJ 348:G1338

    Article  PubMed  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölker U, Lenz J (2005) Solid-state fermentation–are there any biotechnological advantages. Curr Opin Microbiol 8:301–306

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Pan JH, Chen B, Yu M, Huang HB, Zhu X, YJ L, She ZG, Lin YC (2011a) Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar Drugs 9:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HB, Xiao ZE, Feng XJ, Huang CH, Zhu X, JH J, Li MF, Lin YC, Liu L, She ZG (2011b) Cytotoxic naphthog-pyrones from the Mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). Helv Chim Acta 94:1732–1740

    Article  CAS  Google Scholar 

  • Huang Z, Yang J, Cai X, She Z, Lin Y (2012) A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat Prod Res 26:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Jennewein S, Rithner CD, Williams RM, Croteau RB (2001) Taxol biosynthesis: taxane 13-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci 98:13595–13600

    Article  CAS  PubMed  Google Scholar 

  • Kala CP (2000) Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biol Conserv 93:371–379

    Article  Google Scholar 

  • Kang JC, Hyde KD, Kong RY (1999) Studies on Amphisphaeriales: the Amphisphaeriaceae (sensu stricto). Mycol Res 103:53–64

    Article  Google Scholar 

  • Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 95:228–233

    CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Tao WY, Cheng L (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239

    Article  CAS  PubMed  Google Scholar 

  • Li H, Huang H, Shao C, Huang H, Jiang J, Zhu X, Liu Y, Liu L, Lu Y, Li M, Lin Y (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tian Y, Yang SX, Zhang YM, Qin JC (2013) Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1. Bioorg Med Chem Lett 23:2945–2947

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Lin X, CH L, Shen YM (2011) Three new triterpenes from Xylarialean sp. A45, an endophytic fungus from Annona squamosa L. Helv Chim Acta 94:301–305

    Article  CAS  Google Scholar 

  • Liu D, Li XM, Meng L, Li CS, Gao SS, Shang Z, Proksch P, Huang CG, Wang BG (2011a) Nigerapyrones A–H, a-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J Nat Prod 74:1787–1791

    Article  CAS  PubMed  Google Scholar 

  • Liu SC, Ye X, Guo LD, Liu L (2011b) Cytotoxic isoprenylated epoxycyclohexanediols from the plant endophyte Pestalotiopsis fici. Chin J Nat Med 9:374–379

    CAS  Google Scholar 

  • Liu S, Guo L, Che Y, Liu L (2013) Pestaloficiols Q–S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun P, Li T, Kurtán T, Mándi A, Antus S, Krohn K, Draeger S, Schulz B, Yi Y, Li L (2011) Bioactive nonanolide derivatives isolated from the endophytic fungus Cytospora sp. J Org Chem 76:9699–9710

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Liu X, Li E, Guo L, Che Y (2013) Arundinols A–C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. J Nat Prod 76:107–112

    Article  CAS  PubMed  Google Scholar 

  • Mbaveng AT, Kuete V, Mapunya BM, Beng VP, Nkengfack AE, Meyer JJM, Lall N (2011) Evaluation of four Cameroonian medicinal plants for anticancer, antigonorrheal and antireverse transcriptase activities. Environ Toxicol Pharm 32:162–167

    CAS  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225

    Article  CAS  Google Scholar 

  • Nadeem M, Mauji R, Pravej A, Ahmad MM, Mohammad A, Qurainy FA, Khan S, Abdin MZ (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res 6:2493–2499

    CAS  Google Scholar 

  • Nygren P, Larsson R (2003) Overview of the clinical efficacy of investigational anticancer drugs. J Int Med 253:46–75

    Article  CAS  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78

    Article  CAS  PubMed  Google Scholar 

  • Ortega HE, Graupner PR, Asai Y, TenDyke K, Qiu D, Shen YY, Rios N, Arnold AE, Coley PD, Kursar TA, Gerwick WH (2013) Mycoleptodiscus A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. J Nat Prod 76:741–744

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Penalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. Trends Biotechnol 16:483

    Article  CAS  PubMed  Google Scholar 

  • Petrini O, Fisher P (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080

    Article  Google Scholar 

  • Preeti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Shaanker RU (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:477–478

    Google Scholar 

  • Raghavarao K, Ranganathan T, Karanth N (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  Google Scholar 

  • Saunders M, Kohn LM (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shiono Y, Kikuchi M, Koseki T, Murayama T, Kwon E, Aburai N, Kimura KI (2011) Isopimarane diterpene glycosides, isolated from endophytic fungus Paraconiothyrium sp. MY-42. Phytochemistry 72:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentate Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342

    Article  CAS  Google Scholar 

  • Sommart U, Rukachaisirikul V, Trisuwan K, Tadpetch K, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Tricycloalternarene derivatives from the endophytic fungus Guignardia bidwellii PSU-G11. Phytochem Lett 5:139–143

    Article  CAS  Google Scholar 

  • Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SP (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Response of PGPR and AM Fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes: mechanisms and molecular interactions. Springer International Publishing, Cham, pp 145–168

    Chapter  Google Scholar 

  • Tan RX, Zhou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  Google Scholar 

  • Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and antiinvasive potential via the inhibition of NF-kB activity. Bioorgan Med Chem 21:3850–3858

    Article  CAS  Google Scholar 

  • Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty HS, Ven S (2007) New hopes from endophytic fungal secondary metabolites. Bol Soc Quím Méx 1:19–26

    Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  Google Scholar 

  • Verza M, Arakawa NS, Lope NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignin by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200

    Article  CAS  Google Scholar 

  • Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  • Wang WL, Lu Z, Tao HW, Zhu TJ, Fang YC, QQ G, Zhu WM (2007) Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. J Nat Prod 70:1558–1564

    Article  CAS  PubMed  Google Scholar 

  • Wang FW, Ye YH, Ding H, Chen YX, Tan RX, Song YC (2010) Benzophenones from Guignardia sp. IFB-E028, an Endophyte on Hopea hainanensis. Chem Biodivers 7:216–220

    Article  CAS  PubMed  Google Scholar 

  • Wang QX, Li SF, Zhao F, Dai HQ, Bao L, Ding R, Gao H, Zhang LX, Wen HA, Liu HW (2011a) Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia 82:777–781

    Article  CAS  PubMed  Google Scholar 

  • Wang XN, Bashyal BP, Wijeratne EK, UˈRen JM, Liu MX, Gunatilaka MK, Arnold AE, Gunatilaka AL (2011b) Smardaesidins A–G, Isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J Nat Prod 74:2052–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X (2012) Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 19:364–368

    Article  CAS  PubMed  Google Scholar 

  • Wiseman H, Kaur H, Halliwell B (1995) DNA damage and cancer: measurement and mechanism. Cancer Lett 93:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu ZC, Li DL, Chen YC, Zhang WM (2010) A new isofuranonaphthalenone and Benzopyrans from the endophytic fungus Nodulisporium sp. A4 from Aquilaria sinensis. Helv Chim Acta 93:920–924

    Article  CAS  Google Scholar 

  • Xie GE, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, Yuan J (2010) SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan HJ, Li XM, Li CS, Wang BG (2012) Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv Chim Acta 95:163–168

    Article  CAS  Google Scholar 

  • Ying YM, Shan WG, Zhang LW, Zhan ZJ (2013) Ceriponols A–K, tremulane sesquitepenes from Ceriporia lacerate HS-ZJUTC13A, a fungal endophyte of Huperzia serrata. Phytochemistry 95:360–367

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Hong K, Lin H, She Z, Li J (2013) New azalomycin F analogs from mangrove Streptomyces sp. 211726 with activity against microbes and cancer cells. Mar Drugs 11:817–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang HC, Liu JM, HY L, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.) J Appl Microbiol 115:102–113

    Article  CAS  PubMed  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68(10):4863–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smriti Gaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarty, K., Gaur, S. (2018). Fungal Endophytes as Novel Sources of Anticancer Compounds. In: Akhtar, M., Swamy, M. (eds) Anticancer Plants: Natural Products and Biotechnological Implements. Springer, Singapore. https://doi.org/10.1007/978-981-10-8064-7_1

Download citation

Publish with us

Policies and ethics