Skip to main content

Application of Thidiazuron in the Micropropagation of Fagaceae

  • Chapter
  • First Online:
Thidiazuron: From Urea Derivative to Plant Growth Regulator

Abstract

The Fagaceae family consists of 7 genera and around 1000 species of trees and bushes that are mainly distributed in temperate and warm areas of the northern hemisphere, although few cross the equator in Southeast Asia. In terms of forestry, members of the Fagaceae are of most importance in forests in the temperate regions of the northern hemisphere, a dominance shared with the conifers that replace this family in cold areas and mountain tops. The genera Quercus (oaks and holm oaks), Fagus (beeches), and Castanea (chestnut) are commercially important sources of timber; Castanea and Quercus (holm oaks) also provide fruits that are used as human food and as animal feed. Many of these trees are also of ornamental value, mainly due to their attractive color of their leaves in autumn.

The majority of these species are difficult to propagate, particularly when the trees reach their adult stage. Biotechnology techniques, such as in vitro tissue culture, would therefore be of great use for their propagation and conservation. These techniques involve the use of growth regulators, especially cytokinins, among which is included thidiazuron (TDZ). This cytokinin has been used to stimulate the development of axillary buds and, mainly, for the induction of adventitious buds and in very few cases in somatic embryogenesis processes. This review presents a summary of the various studies in which TDZ has been used in the micropropagation of diverse species of the family Fagaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Anis M (2007) Rapid clonal multiplication of a woody tree, Vitex negundo L., through axillary shoot proliferation. Agrofor Syst 71:195–200

    Article  Google Scholar 

  • Ahuja MR (1984) In vitro induction of organogenesis in juvenile and mature beech. Silv Genet 33:241–242

    Google Scholar 

  • Arndt FR, Rusch R, Stillfried HV, Hanisch B, Martin WC (1976) SN 49537. A new defoliant. Plant Physiol 57:s-99. (abstr)

    Google Scholar 

  • Baker BS, Bhatia SK (1993) Factors affecting adventitious shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tissue Organ Cult 35:273–277

    Article  CAS  Google Scholar 

  • Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwoods trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of Forest trees. NIFoS, Seoul, pp 56–74

    Google Scholar 

  • Bonga JM (2016) Can explant choice help to resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees. https://doi.org/10.1007/s00468-016-1509-z

  • Bonga JM, von Aderkas P (1992) In vitro culture of trees. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Bowen-O’Connor CA, Hubstenberger J, Killough C, Van Leeuwen DM, St. Hilaire R (2007) In vitro propagation of Acer grandidentatum Nutt. In Vitro Cell Dev Biol Plant 43:40–50

    Article  Google Scholar 

  • Camus A (1929) Les chataigniers. Monographie des genres Castanea et Castanopsis. In: Le Chevalier P (ed) Encyclopédie Economique de Sylviculture. Paul Lechevalier, Paris

    Google Scholar 

  • Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L (2007) An approach to acorn production in Iberian dehesas. Agrofor Syst 70:3–9

    Article  Google Scholar 

  • Carraway DT, Merkle SA (1997) Plantlet regeneration from somatic embryos of American chestnut. Can J For Res 27:1805–1812

    Article  Google Scholar 

  • Castillo A, Cabrera D, Rodríguez P, Zoppolo R, Robinson T (2015) In vitro micropropagation of CG41 apple rootstock. Acta Hortic 1083:569–576

    Article  Google Scholar 

  • Chalupa V (1979) In vitro propagation of some broad-leaved forest trees. Commun Inst For Czech 11:150–170

    Google Scholar 

  • Chalupa V (1981) Clonal propagation of broad-leaved forest trees in vitro. Commun Inst For Czech 12:255–271

    Google Scholar 

  • Chalupa V (1985) In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine-type cytokinins and thidiazuron. Commun Inst For Czech 14:65–90

    Google Scholar 

  • Chalupa V (1988) Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol Plant 30:414–421

    Article  CAS  Google Scholar 

  • Chalupa V (1996) Fagus sylvatica L. (European beech). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Trees IV, vol 35. Springer, Berlin/Heidelberg, pp 138–154

    Google Scholar 

  • Corredoira E, San José MC, Ballester A, Vieitez AM (2005) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hortic 693:387–393

    Article  Google Scholar 

  • Corredoira E, Ballester A, Vieitez FJ, Vieitez AM (2006) Somatic embryogenesis in chestnut. In: Mujib A, Samaj J (eds) Plant cell monographs, Somatic Embryogenesis, vol 2. Springer, Berlin/Heidelberg, pp 177–199

    Google Scholar 

  • Corredoira E, Vieitez AM, San José MC, Vieitez FJ, Ballester A (2016) Advances in somatic embryogenesis and genetic transformation of European chestnut: development of transgenic resistance to ink and blight disease. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. NIFoS, Seoul, pp 279–301

    Google Scholar 

  • Cuenca B, Vieitez AM (1999) Histological study of in vitro development of adventitious buds on leaf explant of Oriental beech (Fagus orientalis Lipski). In Vitro Cell Dev Biol Plant 35:326–332

    Article  Google Scholar 

  • Cuenca B, Vieitez AM (2000) Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regul 32:1–12

    Article  CAS  Google Scholar 

  • Cuenca B, Ballester A, Vieitez AM (2000) In vitro adventitious bud regeneration from internode segments of beech. Plant Cell Tissue Organ Cult 60:213–220

    Article  CAS  Google Scholar 

  • Driver JA, Kuniyuki AH (1972) In vitro propagation of Paradox walnut rootstock. Hortscience 19:507–509

    Google Scholar 

  • Fellman CD, Read PE, Hosier MA (1987) Effects of TDZ and CPPU on meristem formation and shoot proliferation. Hortscience 22:1197–1200

    CAS  Google Scholar 

  • Fernández-Lorenzo JL, Rodríguez S, Viega M (2001) Micropropagación de dos cultivares de fruto de Castanea sativa Mill. In: Proc III Congreso Forestal Español. Vol II. Mejora Genética, Viveros y Repoblación Forestal, Granada (Spain), pp 742–749

    Google Scholar 

  • Fey BS, Endress PK (1983) Development and morphological interpretation of the cupule in Fagaceae. Flora 173:451–468

    Article  Google Scholar 

  • Gomes F, Canhoto JM (2009) Micropropagation of strawberry tree (Arbutus unedo L.) from adult plants. In Vitro Cell Dev Biol Plant 45:72–82

    Article  CAS  Google Scholar 

  • González-Benito ME, Martín C (2011) In vitro preservation of Spanish biodiversity. In Vitro Cell Dev Biol Plant 47:46–54

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:1–12

    Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000

    Article  CAS  Google Scholar 

  • Hare PD, Staden J, van Staden J (1994) Inhibitory effect of TDZ on the activity of cyotkinin oxidase isolated from soybean callus. Plant Cell Physiol 35:1121–1125

    Article  CAS  Google Scholar 

  • Herman EB (1995) Recent advances in plant tissue culture III. Agritech Consultants, Shrub Oak

    Google Scholar 

  • Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Hutchinson MJ, Saxena PK (1996) Role of purine metabolism in TDZ-induced somatic embryogenesis of geranium (Pelargonium x hortorum) hypocotyls cultures. Physiol Plant 98:517–522

    Article  CAS  Google Scholar 

  • Johnson PS, Shifley SR, Rogers R (2002) The ecology and silviculture of oaks. CABI, New York

    Book  Google Scholar 

  • Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Kahia J, Kirika M, Lubabali H, Mantel S (2016) High-frequency direct somatic embryogenesis and plantlet regeneration from leaves derived from in vitro-germinated seedlings of a Coffea arabica hybrid cultivar. Hortscience 51:1148–1152

    Article  CAS  Google Scholar 

  • Kartsonas E, Papafotiou M (2007) Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tissue Organ Cult 90:111–116

    Article  CAS  Google Scholar 

  • Kartsonas E, Papafotiou M (2009) Micropropagation of Quercus euboica Pap., a rare endemic oak species in Greece. Acta Hortic 813:485–490

    Article  CAS  Google Scholar 

  • Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genome 8:583–610

    Article  Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L, Sánchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the art, benefits, challenges and future direction. Trees Genet Genomes 9:883–899

    Article  Google Scholar 

  • Lenz RR, Magnusson VA, Dai W (2016) Plant regeneration of ‘Amethyst’ purple raspberry (Rubus occidentalis x R. idaeus ‘Amethyst’) from in vitro leaf tissues. Acta Hortic 1133:491–496

    Article  Google Scholar 

  • Li H, Murch SJ, Saxena PK (2000) Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell Tissue Organ Cult 62:169–173

    Article  CAS  Google Scholar 

  • Liu Y, Lu J, Zhu H, Li L, Shi Y, Yin X (2016) Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L. Biotechnol Biotechnol Equip 30:907–914

    Article  Google Scholar 

  • Lloyd G, McCown BH (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb Proc Int Plant Propagators’ Soc 30:421–427

    Google Scholar 

  • Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29P:92–96

    Article  CAS  Google Scholar 

  • Martínez MT, Corredoira E, Valladares S, Jorquera L, Vieitez AM (2008) Germination and conversion of somatic embryos derived from mature Quercus robur trees: the effects of cold storage and thidiazuron. Plant Cell Tissue Organ Cult 95:341–351

    Article  Google Scholar 

  • Martínez MT, San José MC, Vieitez AM, Cernadas MJ, Ballester A, Corredoira E (2017) Propagation of mature Quercus ilex L. (holm oak) trees by somatic embyogenesis. Plant Cell Tissue Organ Cult 131:321–333

    Google Scholar 

  • Matand K, Prakash CC (2007) Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. J Biotechnol 130:202–207

    Article  CAS  PubMed  Google Scholar 

  • Meier K, Reuther G (1994) Factors controlling micropropagation of mature Fagus sylvatica. Plant Cell Tissue Organ Cult 39:231–238

    Article  Google Scholar 

  • Mok MC, Mok DWS (1985) The metabolism of [14C]-TDZ in callus cultures of Phaseolus lunatus. Physiol Plant 65:427–432

    Article  CAS  Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N′-1,2,3-thidiazol-5-ylurea (TDZ). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Monteuuis O (2016) Micropropagation and production of forest trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of Forest trees. NIFoS, Seoul, pp 32–55

    Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different original clonal offspring from mature Sequoiadendron giganteum genotype. Trees 22:779–784

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Krishnaraj S, Saxena PK (1997) TDZ-induce morphogenesis of Regal Geranium (Pelargonium domesticum): a potential stress response. Physiol Plant 101:183–191

    Article  CAS  Google Scholar 

  • Murthy BNS, Saxena PK (1998) Somatic embryogenesis and plant regeneration of Neem (Azadirachta indica A. Juss). Plant Cell Rep 17:469–475

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) TDZ-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Murthy BNS, Singh RP, Saxena PK (1996) Induction of high frequency somatic embryogenesis in geranium (Pelargonium x hortorum Bailey cv. Ringo Rose) cotyledonary cultures. Plant Cell Rep 15:423–426

    Article  CAS  PubMed  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nagata R, Kawachi E, Hashimoto Y, Shudo K (1993) Cytokinins-specific binding protein in etiolated mung bean seedlings. Biochem Biophys Res Commun 191:543–549

    Article  CAS  PubMed  Google Scholar 

  • Nelson CD, Powell WA, Merkle SA, Carlson JE, Hebard FV, Islam-Faridi N, Staton ME, Georgi L (2014) Biotechnology of trees: chestnut. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, pp 3–34

    Google Scholar 

  • Nhut DT, Hahn NTM, Tuan PQ, Nguyet TM, Tram NTH, Chinh NC, Nguyen NH, Vinh DN (2006) Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum. Sci Hortic 110:93–97

    Article  Google Scholar 

  • Nixon KC, Crepet WL (1989) Triganobalanus (Fagaceae): taxonomy status and phylogenetic relationships. Am J Bot 76:828–841

    Article  Google Scholar 

  • Panda BM, Mehta UJ, Hazra S (2016) Micropropagation of Semecarpus anacardium L. from mature tree-derived nodal explants. Plant Biosyst 150:942–952

    Article  Google Scholar 

  • Pandey A, Tamta S (2014) In vitro propagation of the important tasar oak (Quercus serrata Thunb.) by casein hydrolysate promoted high frequency shoot proliferation. J Sustain Forest 33:590–603

    Article  Google Scholar 

  • Park YS, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute for Forest Science (NIfoS), Seoul, pp 302–322

    Google Scholar 

  • Pavingerova D (2009) The influence of thidiazuron on shoot regeneration from leaf explants of fifteen cultivars of Rhododendron. Biol Plant 54:797–799

    Article  Google Scholar 

  • Preece JE, Huetteman CA, Ashby WC, Roth PL (1991) Micro- and cutting preparation of silver maple I. Results with adult and juvenile propagules. J Am Soc Hortic Sci 116:142–148

    CAS  Google Scholar 

  • Ramírez M, Krasowski MJ, Loo JA (2007) Vegetative propagation of American beech resistant to beech bark disease. Hort Sci 40:320–324

    Google Scholar 

  • Roussos PA, Archimandriti A, Beldekou I (2016) Improving in vitro multiplication of juvenile European chestnut (Castanea sativa Mill.) explants by the use of growth retardants. Sci Hortic 198:254–256

    Article  CAS  Google Scholar 

  • Rugini E, Silvestri C (2016) Somatic embryogenesis in olive (Olea europaea L. subsp europaea var. sativa and var. sylvestris). Methods Mol Biol 1359:341–349

    Article  CAS  PubMed  Google Scholar 

  • San José MC, Ballester A, Vieitez AM (2001) Effect of thidiazuron on multiple shoot induction and plant regeneration from cotyledonary nodes of chestnut. J Hortic Sci Biotechnol 76:588–595

    Google Scholar 

  • San José MC, Cernadas MJ, Corredoira E (2014) Histology of the regeneration of Paulownia tomentosa (Paulowniaceae) by organogenesis. Rev Biol Trop 62:809–818

    Article  Google Scholar 

  • Sato T (1991) Basic studies of organ and callus culture in woody plants. Bull For Prod Res Inst 360:35–119

    CAS  Google Scholar 

  • Saxena PK, Malik KA, Gill R (1992) Induction by TDZ of somatic embryogenesis in intact seedlings of peanut. Planta 187:421–424

    Article  CAS  PubMed  Google Scholar 

  • Sedlák J, Paprštein F (2015) In vitro multiplication of old pear cultivars. Acta Hortic 1094:163–167

    Article  Google Scholar 

  • Sezgin M, Dumanoglu H (2014) Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill). In Vitro Cell Dev Biol Plant 50:58–68

    Article  CAS  Google Scholar 

  • Singh A, Agarwal PK (2016) Enhanced micropropagation protocol of ex vitro rooting of a commercially important crop plant Simmondsia chinensis (Link) Schneider. J For Sci 62:107–115

    Article  Google Scholar 

  • Singh G, Rai ID, Rawat GS (2011) The year 2010 was ‘mast sed year’ for the Kharsu oak (Quercus semecarpifolia Sm.) in the western Himalaya. Curr Sci 100:1275

    Google Scholar 

  • Soylu A, Ertük Ü (1999) Researches on micropropagation of chestnut. Acta Hortic 494:247–253

    Article  Google Scholar 

  • Tafazoli M, Nasr SMH, Jalilvand H, Bayat D (2013) Plant regeneration through organogenesis of chestnut (Castanea sativa Mill.) Afr J Biotechnol 12:7063–7069

    Google Scholar 

  • Tetsumura T, Yamashita K (2004) Micropropagation of Japanese chestnut (Castanea crenata Sieb. et Zucc.) seedlings. Hort Sci 39:1684–1687

    Google Scholar 

  • Traore A, Maximova SN, Guiltinan MJ (2003) Micropropagation of Theobroma cacao L. using embryo-derived plants. In Vitro Cell Dev Biol Plant 39:332–337

    Article  CAS  Google Scholar 

  • Vengadesan G, Pijut PM (2009) In vitro propagation of northern red oak (Quercus rubra L.) In Vitro Cell Dev Biol Plant 45:474–482

    Article  CAS  Google Scholar 

  • Vieitez FJ, Merkle SZ (2005) Castanea spp. chestnut. In: Litz (ed) Biotechnology of fruit and nut crops. CAB International, Wallingford, pp 265–296

    Chapter  Google Scholar 

  • Vieitez AM, San José MC (1996) Adventitious shoot regeneration from Fagus sylvatica leaf explants in vitro. In Vitro Cell Dev Biol Plant 32:140–147

    Article  Google Scholar 

  • Vieitez AM, Ferro E, Ballester A (1993) Micropropagation of Fagus sylvatica L. In Vitro Cell Dev Biol Plant 29P:183–188

    Article  Google Scholar 

  • Vieitez AM, San José MC, Sánchez MC, Ballester A (2003) Micropropagation of Fagus spp. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, pp 181–215

    Chapter  Google Scholar 

  • Vieitez AM, Corredoira E, Martínez MT, San José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2012) Application of biotechnological tools to Quercus improvement. Eur J For Res 131:519–539

    Article  CAS  Google Scholar 

  • Visser C, Qureshi JA, Gill T, Saxena PK (1992) Morphoregulatory role of TDZ. Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99:1704–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waidinger E, Rodkachane P (1993) Investigations on micropropagation of adult chestnut. Proc Int Cong on Chestnut. Spoleto, Italy, pp 205–210

    Google Scholar 

  • Wang SY, Jiao HJ, Faust M (1991) Changes in metabolic enzyme activities during TDZ-induced lateral bud break of apple. Hort Sci 26:171–173

    CAS  Google Scholar 

  • Wheeler N, Sedroff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187

    Article  Google Scholar 

  • Wilhem E, Rodkachane P (1992) Micropropagation of juvenile and adult Castanea sativa by using thidiazuron. Proc Int Chestnut Conference, Morgantown, West Virginia, pp 129

    Google Scholar 

  • Wojtania A, Gabryszewska E, Podwyszynska M (2011) The effect of growth regulators and sucrose concentration on in vitro propagation of Camellia japonica L. Propag Ornam Plants 11:177–183

    Google Scholar 

  • Yang G, Zhongge L, Asante TM (2009) In vitro responses of American chestnut to plant growth regulators in culture medium. Acta Hortic 844:229–234

    Article  Google Scholar 

  • Yip WK, Yang SF (1986) Effect of TDZ, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol 80:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaytseva Y, Poluboyarova TV, Novikova TI (2016) Effects of thidiazuron on in vitro morphogenic response of Rhododendron sichotense Pojark. and Rhododendron catawbiense cv. Grandiflorum leaf explants. In Vitro Cell Dev Biol Plant 52:56–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To all the members who, during all these years, have been part of the Biotechnology and Forest Improvement Group, having contributed in one way or another to the success of the micropropagation of these species. These works have been partially funded with different projects from CICYT, MINECO, and Xunta de Galicia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma del Carmen San José .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Carmen San José, M., Teresa Martínez, M., José Cernadas, M., Montenegro, R., Corredoira, E. (2018). Application of Thidiazuron in the Micropropagation of Fagaceae. In: Ahmad, N., Faisal, M. (eds) Thidiazuron: From Urea Derivative to Plant Growth Regulator. Springer, Singapore. https://doi.org/10.1007/978-981-10-8004-3_9

Download citation

Publish with us

Policies and ethics