Skip to main content

Optimisation of the Culture Conditions of Nannocalanus minor (Copepoda: Calanoida)

  • Chapter
  • First Online:
Basic and Applied Zooplankton Biology

Abstract

By studying the biology of copepods, including their growth, survival and reproductive behaviour, we can obtain baseline information on the culture of particular species at the laboratory- and pilot-scale levels. This information can be used in the development of feed for the commercial production of fish seeds. Most of the research conducted to date has focused on copepod taxonomy and ecology. However, studies on the biology of copepods are limited. Amongst the marine copepods, experimental work has been conducted with different species of the genus Oithona by Murphy (1923), Gibbons and Ogilvie (1933), Rao (1958), Haq (1965), Goswami (1975), Lampitt (1978), Perumal et al. (2000) and Santhanam and Perumal (2002). Very limited reports are available on the biology of copepods in Indian waters that investigate feeding behaviour, developmental biology and reproductive biology (Rao 1958; Krishnaswamy 1950; Goswami 1975; Saraswathy and Santhakumari 1982; Shrivastava et al. 1999; Perumal et al. 2000; Santhanam and Perumal 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeda, R., C.B. Augustin, M. Alcaraz, A. Calbet, and E. Saiz. 2010. Feeding rates and gross growth efficiencies of larval developmental stages of Oithona davisae (Copepoda, Cyclopoida). Journal of Experimental Marine Biology and Ecology 387 (1–2): 24–35.

    Article  Google Scholar 

  • Andersen, C.M., and T.G. Nielsen. 1997. Hatching rate of the egg-carrying estuarine copepod Eurytemora affinis. Marine Ecology Progress Series 160: 283–289.

    Article  Google Scholar 

  • Arnaud, Lacoste, Serge A. Poulet, Anne Cueff, Gerhard kattner, Adrianna lanora, and Mohamed Laabi. 2001. New evidence of the copepod maternal food effects on reproduction. Journal of Experimental Marine Biology and Ecology 259: 85–107.

    Article  Google Scholar 

  • Ban, S. 1994. Effect of temperature and food concentration on post embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. Journal of Plankton Research 16: 721–735.

    Article  Google Scholar 

  • Ban, S., H.-W. Lee, A. Shinada, and T. Toda. 2000. In situ egg production and hatching success of the marine copepod Pseudocalanus newmani in Funka Bay and adjacent waters off southwestern Hokkaido, Japan: Associated to diatom bloom. Journal of Plankton Research 22: 907–922.

    Article  Google Scholar 

  • Bautista, B.R., P. Harris, V. Rodriguez, and F. Guerrero. 1994. Temporal variability in copepod fecundity during two different spring bloom periods in coastal waters off Plymouth (SW England). Journal of Plankton Research 16: 1367–1377.

    Article  Google Scholar 

  • Belmontle, Genuario, and Anna Carmela Pati. 2007. Hatching rate and diapauses duration in eggs of Paracartia latisetosa (Copepoda: Calanoida). Journal of Plankton Research 29 (1): 139–1247.

    Google Scholar 

  • Bonnet, B., R.P. Harris, L. Yebra, F. Guilhaumon, D.V.P. Conway, and A.G. Hirst. 2008. Temperature effects on Calanus helgolandicus (Copepoda: Calanoida) development time and egg production. Journal of Plankton Research 31 (1): 31–44.

    Article  Google Scholar 

  • Brugnano, C., L. Guglielmo, and G. Zagami. 2008. Food type effects on reproduction of hyperbenthic calanoid species Pseudocyclops xiphophorus wells, 1967, under laboratory conditions. Chemical Ecology 24 (S1): 111–117.

    Article  Google Scholar 

  • Burkhart, C.A., and G.S. Kleppel. 1998. A new incubation system for the measurement of copepod egg production and egg hatching success in the field. Journal of Experimental Marine Biology and Ecology 221: 89–97.

    Article  Google Scholar 

  • Buttino, I., A. Ianora, S. Buono, V. Vitello, G. Sansone, and A. Miralto. 2009. Are monoalgal diets inferior to plurialgal diets to maximize cultivation of the calanoid copepod Temorastylifera. Marine Biology 156: 1171–1182.

    Article  CAS  Google Scholar 

  • Camus, T., C. Zeng, and A.D. McKinnon. 2009. Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture 297: 169–175.

    Article  Google Scholar 

  • Caramujo, M.J., and M.J. Boavida. 1999. Characteristics of the reproductive cycles and development times of Copidodiaptomus numidicus (Copepoda: Calanoida) and Acanthocyclops robustus (Copepoda: Cyclopoida). Journal of Plankton Research 21: 1765–1778.

    Article  Google Scholar 

  • Cervetto, G., R. Goudy, M. Pagano, L. Saint-Jean, G. Veuiopoulos, R. Aarfi, and M. Levean. 1993. Diel variations in Acartia tonsa feeding, respiration and egg production in a Mediterranean coastal lagoon. Journal of Plankton Research 15: 1207–1228.

    Article  Google Scholar 

  • Cervetto, G., R. Gaudy, and M. Pagano. 1999. Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). Journal of Experimental Marine Biology and Ecology 239: 33–45.

    Article  Google Scholar 

  • Cervetto, G., D. Calliari, L. Rodriguez-Grana, G. Lacerot, and R. Castiglioni. 2006. Zooplancton de ambient escosteros de Uruguay: anadiendo piezas al rompecabezas. In Bases para la conservacion y el manejo de la costa uruguaya, ed. R. Menafra, L. Rodriguez-Gallego, F. Scarabino, and D. Conde, 105–111. Montevideo: Vida Silvestre Uruguay.

    Google Scholar 

  • Checkley, M.D. 1980. Food limitation of egg production by a marine planktonic copepod in the sea off Southern California. Limnology and Oceanography 25 (6): 991–998.

    Article  Google Scholar 

  • Chinnery, F.E., and J.A. Williams. 2004. The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Marine Biology 145: 733–738.

    Google Scholar 

  • Cook, K.B., A. Bunker, A. Hay, A.G. Hirst, and D.C. Speris. 2007. Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. Journal of Plankton Research 29 (9): 757–767.

    Article  Google Scholar 

  • Danilo, Calliari, Marc C. Andersen Borg, Peter Thor, Elena Gorokhova, and Peter Tiselius. 2008. Instantaneous salinity reductions affect the survival and feeding rates of the co-occurring copepods Acartia tonsa Dana and A. clausi Giesbrecht differently. Journal of Experimental Marine Biology and Ecology 362 (1): 18–25.

    Article  CAS  Google Scholar 

  • Davis, C.S. 1984. Food concentrations on Georges Bank: Non-limiting effect on development and survival of laboratory reared Pseudocalanus sp. and Paracalanus parvus (Copepoda: Calanoida). Marine Biology 82: 41–46.

    Article  Google Scholar 

  • Devreker, D., S. Souissi, and L. Seuront. 2004. Development and mortality of the first naupliar stages of Eurytemora affinis (Copepoda, Calanoida) under different conditions of salinity and temperature. Journal of Experimental Marine Biology and Ecology 303: 31–46.

    Article  Google Scholar 

  • Devreker, D., S. Souissi, G. Winkler, J. Forget- Leray, and F. Leboulenger. 2009. Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda: Calanoida) from the seine estuary: A laboratory study. Journal of Experimental Marine Biology and Ecology 368: 113–123.

    Article  Google Scholar 

  • Durbin, E.G., A.G. Durbin, T.J. Smayda, and P.G. Verity. 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnology and Oceanography 28: 1199–1213.

    Article  Google Scholar 

  • Durbin, E.G., A.G. Durbin, and R.G. Campbell. 1992. Body size and egg production in the marine copepod Acartia hudsonica during a winter-spring diatom bloom in Narragansett Bay. Limnology and Oceanography 37: 342–360.

    Article  Google Scholar 

  • Fredrika Norrbin, M. 1993. Seasonal patterns in gonad maturation, sex ratio and size in some small, high-latitude copepods: Implications for overwintering tactics. Journal of Plankton Research 16: 115–131.

    Article  Google Scholar 

  • Ganf, G.George, and J. Shiel Russell. 1985. Feeding behaviour and limb morphology of two cladocerans with small intersetular distances. Australian Journal of Marine and Freshwater Research 36 (1): 69–86.

    Article  Google Scholar 

  • Gibbons, S.G., and H.S. Ogilvie. 1933. The development stages of Oithona helgolandica and Oithona spinirostris with a note on the occurrence of body spines in cyclopoid nauplii. Journal of Marine Biological Association of the United Kingdom 18: 529–655.

    Article  Google Scholar 

  • Goswami, S.C. 1975. Metamorphosis of two species of genus Oithona Baird (Copepoda). Indian Journal of Marine Science 4: 60–67.

    Google Scholar 

  • Guillard, R.L. 1972. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrates Animals, ed. W.L. Smith and M.H. Chanley, 29–60. New York: Plenum.

    Google Scholar 

  • Hall, C.J., and C.W. Burns. 2002. Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepodas: Calanoida). Estuarine, Coastal and Shelf Science 55: 557–564.

    Article  CAS  Google Scholar 

  • Halsband-Lenk, C., H.J. Hirche, and F. Carlotti. 2002. Temperature impact on reproduction and development of congener copepod populations. Journal of Experimental Marine Biology and Ecology 271 (2): 121–153.

    Article  Google Scholar 

  • Haq, S.M. 1965. The larval development of Oithona nana. Proceedings of the Zoological Society of London 146: 555–566.

    Article  Google Scholar 

  • Hassett, R.P. 2004. Supplementation of a diatom diet with cholesterol can enhance copepod egg production rates. Limnology and Oceanography 49: 488–494.

    Article  CAS  Google Scholar 

  • Hassett, R.P., and E.L. Crockett. 2009. Habitat temperature is an important determinant of cholesterol contents in copepods. The Journal of Experimental Biology 212: 71–77.

    Article  CAS  Google Scholar 

  • Hazzard, S.E., and G.G. Kleppel. 2003. Egg production of the copepod Acartia tonsa in Florida Bay: Role of fatty acids in the nutritional composition of the food environment. Marine Ecology Progress Series 252: 199–206.

    Article  CAS  Google Scholar 

  • Hirche, H.J. 1990. Egg production of Calanus finmarchicus at low temperature. Marine Biology 106: 53–58.

    Article  Google Scholar 

  • ———. 1992. Egg production of Eurytemora affinis—effect of K-strategy. Estuarine, Coastal and Shelf Science 35: 395–407.

    Article  Google Scholar 

  • Hirche, H.J., and C. Halsband. 2001. Reproductive cycles of dominant calanoid copepods in the North Sea. Marine Ecology Progress Series 209: 219–229.

    Article  Google Scholar 

  • Hirche, H.J., and S. Kwasniewski. 1997. Distribution, reproduction and development of Calanus species in the northwest water in relation to environmental conditions. Journal of Marine Systems 10: 299–317.

    Article  Google Scholar 

  • Hirche, H.J., and B. Niehoff. 1996. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Polar Biology 16: 209–219.

    Article  Google Scholar 

  • Hirst, A.G., and A.J. Bunker. 2003. Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnology and Oceanography 48: 1988–2010.

    Article  Google Scholar 

  • Holste, L., and M.A. Peck. 2006. The effects of temperature and salinity on egg production and hatching success of Baltic Acartia tonsa (Copepoda: Calanoida): A laboratory investigation. Marine Biology 148: 1061–1070.

    Article  Google Scholar 

  • Hopcroft, R.R., and J.C. Roff. 1998. Zooplankton growth rates: Diel egg production in the copepods Oithona, Euterpina and Corycaeus from tropical creatures. Journal of Plankton Research 18: 789–803.

    Article  Google Scholar 

  • Ianora, A., and S. Poulet. 1993. Egg viability in the copepod Temora stylifera. Limnology and Oceanography 38: 1615–1626.

    Article  Google Scholar 

  • Ianora, A., A. Miralto, and C. Halsband -Lenk. 2007. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Progress in Oceanography 72: 195–213.

    Article  Google Scholar 

  • Irigoien, X., R.N. Head, R.P. Harris, D. Cummings, D. Harbour, and B. Mever-Harms. 2000. Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnology and Oceanography 45 (1): 44–54.

    Article  Google Scholar 

  • Irigoien, X., H.M. Verheye, R.P. Harris, and D. Harbour. 2005. Effect of food composition on egg production and hatching success rate of two copepod species (Calanoides carinatus and Rhincalanus nasutus) in the Benguela upwelling system. Journal of Plankton Research 27 (8): 735–742.

    Article  Google Scholar 

  • Isla, J.A., and R. Perissinotto. 2004. Effects of temperature, salinity and sex on the basal metabolic rate of the estuarine copepod Pseudodiaptomus hessei. Journal of Plankton Research 26: 579–583.

    Article  Google Scholar 

  • Jonasdottir, S.H., and T. Kiorboe. 1996. Copepod recruitment and food composition: Do diatoms affect hatching success? Marine Biology 125: 743–750.

    Article  Google Scholar 

  • Jones, R.H., K.J. Flynn, and T.R. Anderson. 2002. Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Marine Ecology Progress Series 235: 147–156.

    Article  Google Scholar 

  • Kasturirangan, L.R. 1963. A key for the identification of the more common planktonic copepoda of Indian coastal waters, Publication Indian National Committee on Oceanic Research, No. 2, 87. New Delhi: Council of Scientific and Industrial Research.

    Google Scholar 

  • Kimoto, K., S.I. Uye, and J. Onbe. 1986. Egg production of a brackish-water calanoid copepod Sinocalanus benellus in relation to food abundance and temperature. Bulletin of the Plankton Society of Japan 33: 133–145.

    Google Scholar 

  • Kiorboe, T., and T.G. Nielsen. 1994. Regulation of zooplankton biomass and production in a temperate coastal ecosystem.1. Copepods. Limnology and Oceanography 39: 493–507.

    Article  Google Scholar 

  • Kiorboe, T., F. Mohanraj, and H.V. Riisgard. 1985. In situ feeding rates of planktonic copepods comparison of foam methods. Journal of Experimental Marine Biology and Ecology 88: 67–81.

    Article  Google Scholar 

  • Kleppel, G.S. 1992. Environmental regulation of feeding and egg production by Acartia tonsa off southern California. Marine Biology 112: 57–65.

    Article  Google Scholar 

  • Kleppel, G.S., and C.A. Burkart. 1995. Egg production and the nutritional environment of Acartia tonsa: The role of food quality in copepod nutrition. ICES Journal of Marine Science 52: 297–304.

    Article  Google Scholar 

  • Kleppel, G.S., C.A. Burkart, and L. Houchin. 1998. Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa. Limnology and Oceanography 43: 1000–1007.

    Article  Google Scholar 

  • Knuckey, Richard M., Gale L. Semmens, Robert J. Mayer, and Michael A. Rimmer. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: Effects of algal species and feed consumption on copepod development. Aquaculture 249: 339–351.

    Article  Google Scholar 

  • Koski, M., and W.C.M. KleinBreteler. 2003. Influence of diet on copepod survival in the laboratory. Marine Ecology Progress Series 264: 73–82.

    Article  Google Scholar 

  • Koski, M., and H. Kuosa. 1999. The effect of temperature, food concentration and female size on the egg production of the planktonic copepod Acartia bifilosa. Journal of Plankton Research 21: 1779–1789.

    Article  Google Scholar 

  • Koski, M., W. Klein Breteler, and N. Schogt. 1998. Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda: Calanoida). Marine Ecology Progress Series 170: 169–187.

    Article  Google Scholar 

  • Koski, M., J. Engstrom, and M. Viitasalo. 1999. Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Marine Ecology Progress Series 186: 187–197.

    Article  Google Scholar 

  • Krishnaswamy, S. 1950. Larval stages of some copepods in the Madras plankton and their seasonal fluctuation. Journal of Madras University Part B 19: 35–58.

    Google Scholar 

  • Ku Kang, H., Serge Poulet, Arnaucl Lacoste, and Yopng Joo Kang. 2000. A laboratory study of the effect of non-phytoplankton diets on the reproduction of Calanus helgolandicus. Journal of Plankton Research 22 (11): 2171–2179.

    Article  Google Scholar 

  • Laabir, M., S.A. Poulet, A. Cueff, and A. Ianora. 1999. Effect of diet on levels of amino acids during embryonic and naupliar development of the copepod Calanus helgolandicus. Marine Biology 134: 89–98.

    Article  CAS  Google Scholar 

  • Lalli, C.M., and T.R. Parsons. 1997. Biological Oceanography: An Introduction. 2nd ed, 314. Oxford: Butterworth-Heinemann Publications.

    Google Scholar 

  • Lampitt, R.S. 1978. Carnivorous feeding by a small marine copepod. Limnology and Oceanography 23: 1228–1230.

    Article  Google Scholar 

  • Lee, Hong-Wu, Syuhei Ban, Tsutomu Ikeda, and Takashi Matsuishi. 2003. Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. Journal of Plankton Research 25 (3): 261–271.

    Article  CAS  Google Scholar 

  • Linda, Holste, Michael A. St. John, and Myron A. Peck. 2009. The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: A copepod coping with a touch situation. Marine Biology 156: 527–540.

    Article  Google Scholar 

  • Lopez, M.D.G. 1996. Effect of starvation on development and survivorship of naupliar Calanus pacificus (Brodsky). Journal of Experimental Marine Biology and Ecology 203: 133–146.

    Article  Google Scholar 

  • Luis, E. C.Conceicao, Manuel Yuera, Pavlos Makridis, Sofia Morais, and Maria Teresa Dinis. 2010. Live feeds for early stages of fish rearing. Aquaculture Research 41: 613–640.

    Article  Google Scholar 

  • Mazzocchi, M.G., and G.A. Paffenhoper. 1998. First observations on the biology of Clausocalanus furcatus (Copepoda: Calanoida). Journal of Plankton Research 20 (2): 331–342.

    Article  Google Scholar 

  • McKinnon, D., S. Duggan, P.D. Nichols, M.A. Rimmer, G. Semens, and B. Robino. 2003. The potential of tropical paracalanoid copepods as live feeds in aquaculture. Aquaculture 223: 89–106.

    Article  Google Scholar 

  • Merrell, R. Jeffrey, and Diane K. Stoecker. 1998. Differential grazing on protozoan microplankton by developmental stages of the calanoid copepod Eurytemora affinis Poppe. Journal of Plankton Research 20 (2): 289–304.

    Article  Google Scholar 

  • Metz, C. 1998. Feeding of Oncaea curvata (Poecilostomatoida: Copepoda). Marine Ecology Progress Series 169: 229–235.

    Article  Google Scholar 

  • Milione, M., and C. Zeng. 2008. The effects of temperature and salinity on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture 275 (1–4): 116–123.

    Article  Google Scholar 

  • Miralto, A., A. Ianora, L. Guglielmo, G. Zagami, and I. Buttino. 1998. Egg production and hatching success in the peri-Antarctic copepod Calanus simillimus. Journal of Plankton Research 20: 2369–2378.

    Article  Google Scholar 

  • Moore, E.A., and F. Sander. 1983. Physioecology of tropical marine copepods. II. Sex ratios. Crustaceana 44: 113–122.

    Article  Google Scholar 

  • Mullin, M.M., and E.R. Brooks. 1967. Laboratory culture, growth rate and feeding behaviour of planktonic marine copepod. Limnology and Oceanography 12 (4): 657–666.

    Article  Google Scholar 

  • Murphy, H. 1923. The life cycle of Oithona nana reared experimentally. Publication in Zoology. University of California, California 22: 449–454.

    Google Scholar 

  • Murray, Margaret M., and Nancy H. Marcus. 2002. Survival and diapause egg production of the copepod Centropages hamatus raised on dinoflagellate diets. Experimental Marine Ecology 270: 39–56.

    Article  Google Scholar 

  • Nejstgaard, J.C., B.H. Hygum, L.J. Naustvoll, and U. BÃ¥mstedt. 2001. Zooplankton growth, diet and reproductive success compared in simultaneous diatom- and flagellate-microzooplankton-dominated plankton blooms. Marine Ecology Progress Series 221: 77–91.

    Article  Google Scholar 

  • Nival, S., M. Pagano, and P. Nival. 1990. Laboratory study of the spawning rate of the calanoid copepod Centropages typicus effect of fluctuating food concentration. Journal of Plankton Research 12: 535–547.

    Article  Google Scholar 

  • Ohs, C.L., Kelly L. Chang, Scott W. Grabe, Matthew A. DiMaggio, and Erik Stenn. 2010. Evalution of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 307: 225–232.

    Article  Google Scholar 

  • Oliveira, L. 2006. The thermal and caloric induced stress response of Calanus finmarchicus. Honors thesis, University of Hawaii at Manoa, Honolulu, Hawaii.

    Google Scholar 

  • Paffenhofer, G.A. 1984. Food ingestion by the marine planktonic copepod Paracalanus in relation to abundance and size distribution of food. Marine Biology 80: 323–333.

    Article  Google Scholar 

  • Payne, M.F., and R.J. Rippingale. 2000. Rearing west Australian sea horse, Hippocampus subelongatus juveniles on copepod nauplii and enriched Artemia. Aquaculture 188: 353–361.

    Article  Google Scholar 

  • Peck, M.A., and L. Holste. 2006. Effects of salinity, photoperiod and adult stocking density on egg production and egg hatching success in Acartia tonsa (Calanoida: Copepoda): Optimizing intensive cultures. Aquaculture 255: 341–350.

    Article  Google Scholar 

  • Perumal, P., V. Ashokprabu, T. Nedumaran, and P. Santhanam. 2000. Studies on behaviour and survival rate of Oithona rigida Giesbrecht (Copepoda: Cyclopoida) fed with Coscinodiscus centralis Ehrenberg and Skeletonema costatum (Grev) Cleve. Seaweed Research Utiln 22 (1&2): 135–137.

    Google Scholar 

  • Peterson, W.T. 2001. Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia 453 (1): 91–105.

    Google Scholar 

  • Peterson, T.W., and Hans G. Dam. 1996. Pigment ingestion and egg production rate of the calanoid copepod Temora longicornis: Implications for gut pigments loss and omnivorous feeding. Journal of Plankton Research 18 (5): 855–861.

    Article  Google Scholar 

  • Puello-Cruz, A.C., S. Mezo-Villalobos, B. Gonzalez-Rodriguez, and D. Voltolina. 2009. Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture 290: 317–319.

    Article  Google Scholar 

  • Rao, V.R. 1958. The development of a cyclopoid copepod, Oithona rigida (Giesbrecht). Andhra University Memoirs 2 (62): 128–131.

    Google Scholar 

  • Rauquirio, Marinho da Costa, and Felipe Fernande. 2002. Feeding and survival rates of the copepods Euterpina acutifrons Dana and Acartia grani Sars on the dinoflagellates Alexandrium minutum Balech and Gyrodinium corsicum Paulmier and the Chryptophyta Rhodomonas baltica Karsten. Journal of ExperimentalMarineBiology and Ecology 273: 131–142.

    Google Scholar 

  • Rey, C., R. Harris, X. Irigoien, R. Head, and F. Carlotti. 2001. Influence of algal diet on growth and ingestion of Calanus helgolandicus nauplii. Marine Ecology Progress Series 216: 151–165.

    Article  Google Scholar 

  • Rhyne, A.L., C.L. Ohs, and E. Stenn. 2009. Effects of temperature on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 292: 53–59.

    Article  Google Scholar 

  • Richardson, J. Anthony, and Hans M. Verheye. 1998. The relative importance of food and temperature to copepod egg production and somatic growth in the southern Benguela upwelling system. Journal of Plankton Research 20 (12): 2379–2399.

    Article  Google Scholar 

  • Rob, McAllen, and Brennan Elaine. 2009. The effect of environmental variation on the reproductive development time and output of the high-shore rockpool copepod Tigriopus brevicornis. Journal of Experimental Marine Biology and Ecology 368 (1): 75–80.

    Article  Google Scholar 

  • Rodriguez, V., F. Guierrero, and B. Bautista. 1995. Egg production of individual copepods of Acartia grani Sars from coastal waters: Seasonal and diel variability. Journal of Plankton Research 17: 2233–2250.

    Article  Google Scholar 

  • Runge, J.A. 1984. Egg production of the marine, planktonic copepod, Calanus pacificus Brodsky: Laboratory observations. Journal of Experimental Marine Biology and Ecology 74: 53–56.

    Article  Google Scholar 

  • Runge, J.A., and S. Plourde. 1996. Fecundity characteristics of Calanus finmarchicus in coastal waters of eastern Canada. Ophelia 44: 171–187.

    Article  Google Scholar 

  • Santhanam, P., and P. Perumal. 2002. Note on the amino acid profile of cultured copepod, Oithona rigida Giesbrecht. Advances in Biosciences 20 (1): 83–88.

    Google Scholar 

  • Santos, P.J.P., J. Castel, and L.P. Souza-Santos. 1999. Development time of harpacticoid copepods: Some empirical models and implications. Journal of the Marine Biological Association of the United Kingdom 79: 1123–1124.

    Article  Google Scholar 

  • Saraswathy, M., and V. Santhakumari. 1982. Sex ratio of five species of pelagic copepods from Indian Ocean. Mahasagar Bulletin-National Institute of Oceanography 15 (1): 37–42.

    Google Scholar 

  • Schnack, B., R.D. Schnack, and H. Weikert. 1989. Biological observations on small cyclopoid copepods in the Red Sea. Journal of Plankton Research 11 (5): 1089–1101.

    Article  Google Scholar 

  • Shin, K., M. Jang, P. Jang, S. Ju, T. Lee, and M. Chang. 2003. Influence of food quality on egg production and viability of the marine planktonic copepod Acartia omorii. Progress in Oceanography 57: 265–277.

    Article  Google Scholar 

  • Shrivastava, Y., Brenda Fernandas, S.C. Goswami, Usha Goswamy, and C.T. Achuthankutty. 1999. Observation on feeding behaviour and survival rates in the estuarine calanoid copepods Acartia spinicauda and Heliodiaptomus cinctus (Crustacea: Copepoda: Calanoida). Indian Journal of Marine Science 28: 222–224.

    Google Scholar 

  • Stottrup, J.G. 2003. Production and nutritional value of copepods. In Live Feeds in Marine Aquaculture, ed. J.G. Stottrup and L.A. McEvoy, 318. Oxford: Blackwell.

    Chapter  Google Scholar 

  • Stottrup, J.G., and J. Jensen. 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. Journal of Experimental Marine Biology and Ecology 141: 87–105.

    Article  Google Scholar 

  • Stottrup, J.G., J.G. Bell, and J.R. Sargent. 1999. The fate of lipids during development and cold-storage of eggs in the laboratory-reared calanoid copepod, Acartia tonsa Dana, and in response to different algal diets. Aquaculture 176: 257–269.

    Article  CAS  Google Scholar 

  • Sullivan, B.K., J.H. Costello, and D. Van Keuren. 2007. Seasonality of the copepods Acartia hudsonica and Acartia tonsa in Narragansett Bay, RI, USA during a period of climate change. Estuarine, Coastal and Shelf Science 73: 259–267.

    Article  Google Scholar 

  • Sun, X.H., S. Sun, C.L. Li, and G.T. Zhang. 2008. The seasonal and spatial variation in abundance and egg production of Paracalanus parvus (Copepoda: Calanoida) in/out Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science 79: 637–643.

    Article  Google Scholar 

  • Ulrika, Dahl, Charlotta Rubio Lind, Elena Gorokhova, Britta Eklund, and Magnus Breitholtz. 2009. Food quality effects on copepod growth and xlii development: Implications for bioassays in ecotoxicological testing. Ecotoxicology and Environmental Safety 72: 351–357.

    Article  CAS  Google Scholar 

  • Uye, S.I., and A. Murase. 1997. Relationship of egg production rates of the planktonic copepod Calanus sinicus to phytoplankton availability in the Inland Sea of Japan. Journal of Plankton Biology and Ecology 44 (1&2): 3–11.

    Google Scholar 

  • Verity, P.G., and T.J. Smayda. 1989. Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): Ingestion, egg production, and growth of nauplii. Marine Biology 100: 161–171.

    Article  Google Scholar 

  • White, J.R., and M.R. Roman. 1992. Egg production by the calanoid copepod Acartia tonsa in the mesohaline Chesapeake bay: The importance of feed resources and temperature. MarineEcologyProgress Series 86: 239–249.

    Article  Google Scholar 

  • Whitehouse, J.W., and B.G. Lewis. 1973. The effect of diet and density on development size and egg production in Cyclops abyssorum Sars, 1863 (Copepoda, Cyclopoida). Crustaceana 25 (3): 225–236.

    Article  Google Scholar 

  • Yoon, W.D., M.B. Shim, and J.K. Choi. 1998. Description of the developmental stages in Acartia bifilosa Giesbrecht (Copepoda:Calanoida). Journal of Plankton Research 20 (5): 923–942.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department of Marine Science and authorities of Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India, for providing the facilities. The Department of Biotechnology (DBT), Govt. of India, is highly acknowledged for funding this work through a Major Research project (BT/PR10161/AAQ/3/371/2007; dated 20.06.2008).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jothiraj, K., Santhanam, P. (2019). Optimisation of the Culture Conditions of Nannocalanus minor (Copepoda: Calanoida). In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Zooplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7953-5_8

Download citation

Publish with us

Policies and ethics