Skip to main content

Stem Cells: Cellular and Extracellular Requirements for Generation and Use

  • Chapter
  • First Online:
Biological, Physical and Technical Basics of Cell Engineering

Abstract

Cell and stem cell technology embodies the efforts of biologists, bioengineers, and clinicians to develop approaches for the effective treatment of countless medical conditions from cancer, diabetes, and dementia to anemia, skin grafts, and hair loss. The technology of cell and stem cell manipulation bears the potential for these treatment options to be accessible and individualized, achieving the goals of personalized medicine. This chapter touches briefly on historic milestones in the field of stem cell research and provides an overview of discoveries that led to the understanding we have today. Thus, a concise introduction of the terms and definitions of stem cells is provided. Cellular and extracellular cues, such as transcriptional control and the stem cells niche, which in concert determine stem cell behavior, are addressed as well as examples of how this knowledge has been used for stem cell manipulation, in vivo culture and expansion and directed cell type specific differentiation. Finally, this chapter dedicates a section to the goal of generating desired cell types for therapeutic purposes from stem cells and discusses how they are currently studied in a clinical setting. For easy overview, a selection of clinical trials currently under way exploiting the pronounced potential of stem cells for medical purposes is presented in tabular form. Ethical concerns, which inevitably accompany the progress of research and use of stem cells, are addressed, leaving the reader with an unbiased presentation of arguments surrounding the debate of ethics in the stem cell field. Since it is impossible to provide a detailed description of the vast information that has accumulated over the last decades, a selection of the most important advances is provided. In each section, numerous references of review articles and original research papers invite the interested reader for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, G. B., & Scadden, D. T. (2006). The hematopoietic stem cell in its place. Nature Immunology. https://doi.org/10.1038/ni1331. [pii]\r10.1038/ni1331.

  2. Aguila, H. L., & Rowe, D. W. (2005). Skeletal development, bone remodeling, and hematopoiesis. Immunological Reviews. https://doi.org/10.1111/j.0105-2896.2005.00333.x.

    Article  Google Scholar 

  3. Allum, N., Allansdottir, A., Gaskell, G., Jackson, J., Moldovan, A., Priest, S., et al. (2017). Religion and the public ethics of stem-cell research: Attitudes in Europe, Canada and the United States, 1–14.

    Article  Google Scholar 

  4. Becker, A. J., McCulloch, E. A, & Till, J. E. (1963a). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197(4866), 452–454. https://doi.org/10.1038/197452a0.

    Article  Google Scholar 

  5. Becker, A. J., McCulloch, E. A., & Till, J. E. (1963b). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. https://doi.org/10.1038/197452a0.

  6. Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    Article  Google Scholar 

  7. Bülow, H. E., & Hobert, O. (2006). The molecular diversity of glycosaminoglycans shapes animal development. Annual Review of Cell and Developmental Biology. https://doi.org/10.1146/annurev.cellbio.22.010605.093433.

    Article  Google Scholar 

  8. Bungartz, G., Land, H., Scadden, D. T., & Emerson, S. G. (2012). NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood, 119(6), 1380–1389. https://doi.org/10.1182/blood-2011-06-359406.

    Article  Google Scholar 

  9. Bungartz, G., Stiller, S., Bauer, M., Müller, W., Schippers, A., Wagner, N., et al. (2006). Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood, 108(6), 1857–1864. Retrieved from http://bloodjournal.hematologylibrary.org/cgi/content/full/108/6/1857.

    Article  Google Scholar 

  10. Cabarcas, S. M., Mathews, L. A., & Farrar, W. L. (2011). The cancer stem cell niche-there goes the neighborhood? International Journal of Cancer, 129(10), 2315–2327. https://doi.org/10.1002/ijc.26312.

    Article  Google Scholar 

  11. Campbell, K. H., McWhir, J., Ritchie, W. A., & Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380(6569), 64–66. https://doi.org/10.1038/380064a0.

    Article  Google Scholar 

  12. Chao, M. P., Seita, J., & Weissman, I. L. (2008). Establishment of a normal hematopoietic and leukemia stem cell hierarchy establishment of a normal hematopoietic and leukemia stem cell hierarchy, LXXIII (Ogawa 1993), pp. 439–449. https://doi.org/10.1101/sqb.2008.73.031.

  13. Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., et al. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. https://doi.org/10.1038/330576a0.

    Article  Google Scholar 

  14. Domashenko, A. D., Danet-Desnoyers, G., Aron, A., Carroll, M. P., & Emerson, S. G. (2010). TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells. Blood, 116(15), 2676–83. https://doi.org/10.1182/blood-2010-03-273441.

    Article  Google Scholar 

  15. Domingues, M. J., Cao, H., Heazlewood, S. Y., Cao, B., & Nilsson, S. K. (2017). Niche extracellular matrix components and their influence on HSC. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.25905.

    Article  Google Scholar 

  16. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. TL–346. Science (New York, N.Y.). https://doi.org/10.1126/science.1258096.

    Article  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  Google Scholar 

  18. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature. https://doi.org/10.1038/292154a0.

    Article  Google Scholar 

  19. Fuchs, E., & Chen, T. (2012). A matter of life and death: Self-renewal in stem cells. EMBO Reports. https://doi.org/10.1038/embor.2012.197.

    Article  Google Scholar 

  20. Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: Stem cells and their niche. Cell. https://doi.org/10.1016/S0092-8674(04)00255-7.

    Article  Google Scholar 

  21. Gupta, P., Oegema, T. R., Brazil, J. J., Dudek, A. Z., Slungaard, A., & Verfaillie, C. M. (1998). Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood, 92(12), 4641–4651. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9845530.

  22. Hadjimichael, C., Chanoumidou, K., Papadopoulou, N., Arampatzi, P., Papamatheakis, J., & Kretsovali, A. (2015). Common stemness regulators of embryonic and cancer stem cells. World Journal of Stem Cells. https://doi.org/10.4252/wjsc.v7.i9.1150.

    Article  Google Scholar 

  23. Hall, B., Limaye, A., & Kulkarni, A. B. (2009). Overview: Generation of gene knockout mice. Current Protocols in Cell Biology. https://doi.org/10.1002/0471143030.cb1912s44.

    Article  Google Scholar 

  24. Hyun, I., Hochedlinger, K., Jaenisch, R., & Yamanaka, S. (2007). New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2007.09.006.

    Article  Google Scholar 

  25. Iozzo, R. V. (1998). Matrix proteoglycans: from molecular design to cellular function. Annual Review of Biochemistry. https://doi.org/10.1146/annurev.biochem.67.1.609.

    Article  Google Scholar 

  26. Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5(2), 135–138. https://doi.org/10.1016/j.stem.2009.07.001.

    Article  Google Scholar 

  27. Kanji, S., Pompili, V. J., & Das, H. (2011). Plasticity and maintenance of hematopoietic stem cells during development. Recent Patents on Biotechnology. https://doi.org/10.2174/187220811795655896.

    Article  Google Scholar 

  28. Kuroda, Y., & Dezawa, M. (2014). Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anatomical Record, 297(1), 98–110. https://doi.org/10.1002/ar.22798.

    Article  Google Scholar 

  29. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. https://doi.org/10.1038/367645a0.

  30. Lin, H. (2002). The stem-cell niche theory: lessons from flies. Nature Reviews. Genetics. https://doi.org/10.1038/nrg952.

  31. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70. https://doi.org/10.1016/j.stem.2007.05.014.

    Article  Google Scholar 

  32. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638. https://doi.org/10.1073/pnas.78.12.7634.

    Article  Google Scholar 

  33. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology. https://doi.org/10.1038/nbt1335.

    Article  Google Scholar 

  34. Metcalf, D., Moore, M. A. S., & Shortman, K. (1971). Adherence column and buoyant density separation o f bone marrow stem cells and more. Journal Cell Physiology, 78(3), 441–449.

    Article  Google Scholar 

  35. Nurcombe, V., & Cool, S. M. (2007). Heparan sulfate control of proliferation and differentiation in the stem cell niche. Critical Reviews in Eukaryotic Gene Expression, 17(2):159–171.

    Article  Google Scholar 

  36. Ohlstein, B., Kai, T., Decotto, E., & Spradling, A. (2004). The stem cell niche: Theme and variations. Current Opinion in Cell Biology. https://doi.org/10.1016/j.ceb.2004.09.003.

    Article  Google Scholar 

  37. Oldberg, A., Antonsson, P., Hedbom, E., & Heinegard, D. (1990). Structure and function of extracellular matrix proteoglycans. Biochemical Society Transactions, 18(5), 789–792.

    Article  Google Scholar 

  38. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10102814.

    Article  Google Scholar 

  39. Raaijmakers, M. H. G. P., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., et al. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. https://doi.org/10.1038/nature08851.

  40. Rodgers, K. D., San Antonio, J. D., & Jacenko, O. (2008). Heparan sulfate proteoglycans: A GAGgle of skeletal-hematopoietic regulators. Developmental Dynamics, 237(10), 2622–2642. https://doi.org/10.1002/dvdy.21593.

    Article  Google Scholar 

  41. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25 https://Chronicischaemicmitralregurgitation.Currenttreatmentresultsandnewmechanism-basedsurgicalapproaches.

  42. Seydoux, G., & Braun, R. E. (2006). Pathway to totipotency: Lessons from germ cells. Cell, 127(5), 891–904. https://doi.org/10.1016/j.cell.2006.11.016.

    Article  Google Scholar 

  43. Sheridan, C. (2017). CRISPR therapeutics push into human testing. Nature Biotechnology, 35, 3. Retrieved from http://dx.doi.org/10.1038/nbt0117-3.

    Article  Google Scholar 

  44. Stadtfeld, M., Hochedlinger, K., Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development. https://doi.org/10.1101/gad.1963910.

    Article  Google Scholar 

  45. Suhr, F., Delhasse, Y., Bungartz, G., Schmidt, A., Pfannkuche, K., & Bloch, W. (2013). Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells. Stem Cell Res, 11(2), 951–964. https://doi.org/10.1016/j.scr.2013.05.010. [pii]\r10.1016/j.scr.2013.05.010.

    Article  Google Scholar 

  46. Taichman, R. S., Dc, W., & Taichman, R. S. (2011). Blood and bone : Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood, 105(7), 2631–2639. https://doi.org/10.1182/blood-2004-06-2480.

    Article  Google Scholar 

  47. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  Google Scholar 

  48. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024.

    Article  Google Scholar 

  49. Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. https://doi.org/10.1016/0092-8674(87)90646-5.

    Article  Google Scholar 

  50. Thoms, J. A., Joseph, I.-E., Sander, S. S., Waknitz, M. A., Swiergiel, J. J., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(2391), 1145–1147.

    Article  Google Scholar 

  51. Thomson, J. A., Itskovitz-eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Advancement Of Science, 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145.

    Article  Google Scholar 

  52. Vunjak-Novakovic, G., & Scadden, D. T. D. T. (2011). Biomimetic platforms for human stem cell research. Cell Stem Cell. https://doi.org/10.1016/j.stem.2011.02.014.

    Article  Google Scholar 

  53. Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell 116(Icm), 639–648.

    Article  Google Scholar 

  54. Wiles, K., Fishman, J. M., De Coppi, P., & Birchall, M. A. (2016). The host immune response to tissue-engineered organs: Current problems and future directions. Tissue Engineering Part B: Reviews, 22(3), 208–219. https://doi.org/10.1089/ten.teb.2015.0376.

    Article  Google Scholar 

  55. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature. https://doi.org/10.1038/385810a0.

    Article  Google Scholar 

  56. Ye, J., Ge, J., Zhang, X., Cheng, L., Zhang, Z., He, S., et al. (2015). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 26(1), 34–45. https://doi.org/10.1038/cr.2015.142.

    Article  Google Scholar 

  57. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N.Y.). https://doi.org/10.1126/science.1151526.

  58. Zhao, X., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature. https://doi.org/10.1038/nature08267.

  59. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. https://doi.org/10.1038/nature07314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Bungartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bungartz, G., Bungartz, K. (2018). Stem Cells: Cellular and Extracellular Requirements for Generation and Use. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics