Skip to main content

Extraction of Fusicoccin-like Compounds Using Nanocarbon Sorbents and Study of Their Biological and Cytotoxic Activity

  • Chapter
  • First Online:
  • 860 Accesses

Abstract

The problem of creation and use of sorption materials are of current interest for the practice of the modern medicine and agriculture. The knowledge of physical and chemical rules of carbonization, activation as well as sorption and desorption processes is of particular importance in the case of application of the nanostructured carbon sorbent agent for high purification of water contaminated with pesticides, as well as for reducing the concentration of cytokines in the blood of sepsis patients. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is now known that a plant phytohormone—fusicoccin in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccsin from extract of germinated wheat seeds. This method is based on selective sorption of fusicoccin by a nanostructured carbon sorbent. Thus, it becomes possible to create a high-performance domestic anticancer drug.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dubinin, M. M. (1978). Adsorbents, their preparation, properties and applications. -M, 4–22.

    Google Scholar 

  2. Aygun, A., Yenisoy-Karakas, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.

    Google Scholar 

  3. Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., & Xu, H. (2002). Carbon materials for sorption. Materials Chemistry and Physics, 74, 320.

    Google Scholar 

  4. Daud, W. M., & Ali, W. S. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93, 63–69.

    Google Scholar 

  5. Benaddi, H., Bandosz, T. J., Jagiello, J., Schwarz, J. A., Rouzaud, J. N., Legras, D., et al. (2000). Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 38, 669–674.

    Google Scholar 

  6. Asma, B. M. (2000). Apricot production. Malatya Evin Ofset, Turkey, 240 p.

    Google Scholar 

  7. Smisek, M., & Cerny, S. (1970). Active carbon manufacture, properties and aplications (370 p). New York: Elsevier Publishing Company.

    Google Scholar 

  8. Khezami, L., Chetouan, A., Taou, B., & Capar, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157, 48–56.

    Google Scholar 

  9. Hayashi, J., Kazehaya, A., Muroyama, K., & Watkinson, A. P. (2000). Preparation of activated carbons from lignin by chemical activation. Carbon, 38, 1873–1878.

    Google Scholar 

  10. Jandosov, J. M., Shabanova, T. A., Shamalov, M., Biysenbaev, M. A., & Mansurov, Z. A. (2010). Preparation of carbon materials with high specific surface area. Combustion and Plasma Chemistry, 8(3), 257–261.

    Google Scholar 

  11. Klijanienko, A., Grabowska, E. L., & Gryglewicz, G. Z. (2008). Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere. Bioresource Technology, 99, 7208–7214.

    Google Scholar 

  12. Jibril, B., Houache, O., Maamari, R. A., & Rashidi, B. A. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83, 151–158.

    Google Scholar 

  13. Azat, S. (2013). Synthesis of carbonized nano mesoporous sorbents based on vegetable raw materials. Nanoscience and Nanoengineering International Journal, 1(1), 41–44.

    Google Scholar 

  14. Azat, S., Pavlenko, V. V., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Synthesis and structure determination of carbonized nano mesoporous materials based on vegetable raw materials. Advanced Materials Research, 535–537. Online available since Jun 14, 2012 at www.scientific.net.

  15. Fierro, V., Fernandez, V. T., Montane, D., & Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and Mesoporous Materials, 111, 276–284.

    Google Scholar 

  16. Cookson, J. T. (1980). Carbon adsorption handbook. In P. N. Cheremisinoff & F. Ellerbusch (Eds.) (pp. 241–279). Michigan: Ann Arbor Sci.

    Google Scholar 

  17. Keltsev, N. V. (1976). Fundamentals of adsorption technology. Moscow Chemistry, 512.

    Google Scholar 

  18. Greg, S., & Singh, K. (1970). Adsorption, surface area, porosity. M.: Mir, 259.

    Google Scholar 

  19. Mansurov, Z. A., Zhylybaeva, N. K., Ualieva, P. S., & Mansurova, R. M. (2002). Obtaining procedure and properties of the sorbents from plant raw material. Chemistry for Sustainable Development, 3, 321–328.

    Google Scholar 

  20. Mansurov, Z. A., Digel, I., Biisenbaev, M. A., Savitskaya, I., Kistaubaeva, A., Akimbekov, N., et al. (2012). Composites and their applications. INTECH 2012 Chap. 11, 271–295.

    Google Scholar 

  21. Mansurov, Z. A., Shabanova, T. A., & Mansurova, R. M (2004). The morphology of micro nano particles of carbonized plant materials. Bulletin of KazNU. Series of Chemical, 2(34), 129–135.

    Google Scholar 

  22. Basso, M. C., Cerrella, E. G., & Cukierman, A. L. (2002). Activated carbons from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions. Industrial & Engineering Chemistry Research, 41, 180–189.

    Google Scholar 

  23. Jia, Y. F., & Thomas, K. M. (2000). Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 16, 1114.

    Google Scholar 

  24. Azat, S., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Synthesis and structure determination carbonated nanomaterials based on vegetable raw materials. In VII International Symposium “Physics and Chemistry of Carbon Materials/Nanoengineering”, Almaty (pp. 124–126). On Sept 19–21.

    Google Scholar 

  25. Mansurov, Z. A. (2008). Synthesis of carbon nanomaterials and their applied aspects. Herald A Series of Chemical, 2(50), 16–31.

    Google Scholar 

  26. Azat, S. Mansurov, Z. A. (2011). Wastewater treatment using for carbonized nanosorbents. Vestnik KazNU Chemical Series, 1(61), 166–169.

    Google Scholar 

  27. Emuranov, M., Yu, S., Zhylybaeva, N. K., Biysenbaev, M. A., Shabanova, T. A., Ryabikin, Yu., et al. (2006). Multifunctional nanostructured carbonized sorbents. Bulletin of National Academy of Sciences of Kazakhstan A Series of Chemical, 4, 35–41.

    Google Scholar 

  28. Bevla, F. R., Rico, D. P., & Gomis, A. F. (1984). Activated carbon from almond shells. Chemical activation. Activating reagent selection and variables influence. Industrial Engineering Chemistry Product Research and Development, 23, 266–269.

    Google Scholar 

  29. Aygun, A., Yenisoy-Karakas, S., & Duman, I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 66, 189–195.

    Google Scholar 

  30. Razvigorova, M., Budinova, T., Petrov, N., & Minkova, V. (1998). Purification of water by activated carbons from apricot stones, lignites and anthracite. Water Research, 32, 2135–2139.

    Google Scholar 

  31. Ballio, A., Chain, E. B., DeLeo, P., Erlanger, B. F., Mauri, M., & Tonolo, A. (1964). Fusicoccin: A new wilting toxin produced by Fusicoccum Amygdali Del. Nature, 203(4642), 297.

    Google Scholar 

  32. Babakov, A. V., Abramycheva, N. Y., Bilushi, S. T., & Shevchenko, V. P. (1990). Research fusicoccin interaction with the plasma membrane of higher plants. Biology Membrane, 7.2. M, 107–112.

    Google Scholar 

  33. Tajima, N., Nukina, M., Kato, N., & Sassa, T. (2004). Novel fusicoccins R and S, and the fusicoccin S aglycon (phomopsiol) from Phomopsis amygdali Niigata 2-A, and their seed germination-stimulating activity in the presence of abscisic acid. Bioscience, Biotechnology, and Biochemistry, 68(5), 1125–1130.

    Google Scholar 

  34. Aducci, P., Ballio, A., Fogliano, V., Fullone, M. R., Marra, M., & Proietti, N. (2003). Purification and photoaffinity labeling of fusicoccin receptors from maize. Development, 130(20), 4847–4858.

    Google Scholar 

  35. De Boer, A. H., Watson, B. A., & Cleland, R. E. (1989). Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiology, 89(1), 250–259.

    Google Scholar 

  36. Trofimova, M. S., Smolenskaya, I. N., Drabkin, A. V., Galkin, A. V., & Babakov, A. V. (1997). Does plasma membrane H+ATPase activation by fusicoccin involve protein kinase. Physiologia Plantarum, 99(2), 221–226.

    Google Scholar 

  37. Olivari, C., Meanti, C., De Michelis, M. I., & Rasi-Caldogno, F. (1998). Fusicoccin binding to its plasma membrane receptor and the activation of the plasma membrane H + -ATPase IV. Fusicoccin induces the association between the plasma membrane H + -ATPase and the fusicoccin receptor. Plant Physiology, 116(2), 529–537.

    Google Scholar 

  38. Oecking, C., Eckerskorn, C., & Weiler, E. W. (1994). The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Letters, 352, 163–166.

    Google Scholar 

  39. Olivari, C., Albumi, C., Pugliarello, M. C., & De Michelis, M. I. (2000). Phenylarsine oxide inhibits the fusicoccin-induced activation of plasma membrane H + -ATPase. Plant Physiology, 122(2), 463–470.

    Google Scholar 

  40. Baunsgaard, L., Fuglsang, A. T., Jahn, T., Korthout, H. A. A. J., De Boer, A. H., & Palmgren, M. G. (1998). The 14-3-3 proteins associate with the plant plasma membrane H + -ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. The Plant Journal 13(5), 661–671.

    Google Scholar 

  41. De Vries-van Leeuwen, I. J., Kortekaas-Thijssen, C., Nzigou Mandouckou, J. A., Kas, S., Evidente, A., & De Boer, A. H. (2010). Fusicoccin-A selectively induces apoptosis in tumor cells after interferon-a priming. Cancer Letters, 293(2), 198–206.

    Google Scholar 

  42. Sassa, T., Tajima, N., Sato, M., Takahashi, A., & Kato, N. (2002). Fusicoccins P and Q, and 3-epifusicoccins H and Q, new polar fusicoccins from isolate Niigata 2-A of a peach fusicoccum canker fungus. Bioscience, Biotechnology, and Biochemistry, 66(11), 2356–2361.

    Google Scholar 

  43. Come, C., Laine, A., Chanrion, M., Edgren, H., Mattila, E., Liu, X., et al. (2009). CIP2A is associated with human breast cancer aggressivity. Clinical Cancer Research, 15(16), 5092–5100.

    Google Scholar 

  44. Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., & Oecking, C. (2003). Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO Journal, Chemical structure of Fusicoccin-A, Cotylenin-A and Ophiobolin-A, 22(5)(C), 987–994.

    Google Scholar 

  45. Korthout, H. A. A. J., & De Boer, A. H. A. (1994). fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. The Plant Cell, 6(11), 1681–1692.

    Google Scholar 

  46. Sassa, T., Tajima, N., Sato, M., Takahashi, A., & Kato, N. (2002). Fusicoccins P and Q, and 3-epifusicoccins H and Q, new polar fusicoccins from isolate Niigata 2-A of a peach fusicoccum canker fungus. Bioscience, Biotechnology, and Biochemistry, 66(11), 2356–2361.

    Google Scholar 

  47. Bunney, T. D., De Boer, A. H., & Levin, M. (2003). Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development, 130(20), 4847–4858.

    Google Scholar 

  48. Pavlenko, V. V., Anurov, S. A., Mansurov, Z. A., Biysenbaev, M. A., Konkova, T. V., Azat, S., et al. (2014). Preparation of microporous activated carbons based on carbonized shell apricot. Vestnik KazNU, Chemical Series, 3(75), 103–113.

    Google Scholar 

  49. Mansurov, Z. A., Jandosov, J. M., Kerimkulova, A. R., Azat, S., Zhubanova, A. A., Digel, I. E., et al. (2013). Nanostructured carbon materials for biomedical Use. Eurasian Chemico-Tecnological Journal, 15(3), 209–217.

    Google Scholar 

  50. Mansurov, Z. A., Azat, S., Adekenova, A. S., Kerimkulova, A. R., Ivasenko, S. A., Shulgau, Z. T., et al. (2013). Extraction fusicoccin from wheat seeds using nanocarbon sorbents. Advanced Materials Research, 647, 67–70.

    Google Scholar 

  51. Azat, S., Adekenova, A. S., Ivasenko, S. A., Seydahmetova, R. B., Kerimkulova, A. R., & Mansurov, Z. A. (2012). Development of technology for drug fusicoccin on nanocarbon sorbents and the study of the biological activity. Pharmaceutical Bulletin Scientific Journal, 2–3(164), 57–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Mansurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansurov, Z.A., Azat, S., Kerimkulova, A.R. (2018). Extraction of Fusicoccin-like Compounds Using Nanocarbon Sorbents and Study of Their Biological and Cytotoxic Activity. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics