Skip to main content

Mechanics of Soft Tissue Reactions to Textile Mesh Implants

  • Chapter
  • First Online:

Abstract

For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alaedeen, D. I., Lipman, J., Medalie, D., & Rosen, M. J. (2007). The single staged approach to the surgical management of abdominal wall hernias in contaminated fields. Hernia, 11(1), 41–45.

    Article  Google Scholar 

  2. Amid, P. K. (1997). Classification of biomaterials and their related complications in abdominal wall surgery. Hernia, 1(1), 15–21.

    Article  Google Scholar 

  3. Amid, P. K. (2004). Shrinkage: fake or fact? In V. Schumpelick & L. M. Nyhus (Eds.), Meshes: benefits and risks. Berlin: Springer.

    Google Scholar 

  4. Anderson, J. M. (1988). Inflammatory response to implants. ASAIO Transactions, 34(2), 101–107.

    Article  Google Scholar 

  5. Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Seminars in Immunology, 20(2), 86–100.

    Article  Google Scholar 

  6. Anurov, M. V., Titkova, S. M., & Oettinger, A. P. (2012). Biomechanical compatibility of surgical mesh and fascia being reinforced: Dependence of experimental hernia defect repair results on anisotropic surgical mesh positioning. Hernia, 16(2), 199–210.

    Article  Google Scholar 

  7. Arshady, R. (2003). Polymeric biomaterials: chemistry, concepts, criteria. In R. Arshady (Ed.), Introduction to polymeric biomaterials: the polymeric biomaterials series (pp. 1–62). London: Citus Books.

    Google Scholar 

  8. Baktir, A., Dogru, O., Girgin, M., Aygen, E., Kanat, B. H., Dabak, D. O., et al. (2013). The effects of different prosthetic materials on the formation of collagen types in incisional hernia. Hernia, 17(2), 249–253.

    Article  Google Scholar 

  9. Bay-Nielsen, M., Kehlet, H., Strand, L.,  Malmstrøm. J., Andersen, F. H., Wara, P. et al. (2001). Quality assessment of 26,304 herniorrhaphies in Denmark: A prospective nationwide study. Lancet, 358(9288), 1124–1128.

    Article  Google Scholar 

  10. Bendavid, R., & Kux, M. (2001). Seromas. In R. Bendavid, J. Abrahamson, M. E. Arregui, J. B. Flament, & E. H. Phillips (Eds.), Abdominal wall hernias: Principles and management (pp. 753–756). New York: Springer.

    Chapter  Google Scholar 

  11. Birk, D. E., Fitch, J. M., Babiarz, J. P., Doane, K. J., & Linsenmayer, T. F. (1990). Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. Journal of Cell Science, 95(Pt 4), 649–657.

    Google Scholar 

  12. Brown, C. N., & Finch, J. G. (2010). Which mesh for hernia repair? Annals of the Royal College of Surgeons of England, 92(4), 272–278.

    Article  Google Scholar 

  13. Brown, G. L., Richardson, J. D., Malangoni, M. A., Tobin, G. R., Ackerman, D., & Polk, H. C. (1985). Comparison of prosthetic material for abdominal wall reconstruction in the presence of contamination and infection. Annals of Surgery, 201(6), 705–711.

    Article  Google Scholar 

  14. Burger, J. W. A., Luijendijk, R. W., Hop, W. C. J., Halm, J. A., Verdaasdonk, E. G., & Jeekel, J. (2004). Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Annals of Surgery, 240(4), 578–585.

    Google Scholar 

  15. Casey, E. M. (2015). Physical characterization of surgical mesh after function in hernia repair (Master Thesis). Clemson University, South Carolina, USA. All Theses. Paper 2085.

    Google Scholar 

  16. Chen, E. H., Grote, E., Mohler, W., et al. (2007). Cell-cell fusion. FEBS Letters, 581(11), 2181–2193.

    Article  Google Scholar 

  17. Choe, J. M., Kothandapani, R., James, L., & Bowling, D. (2001). Autologous, cadaveric, and synthetic materials used in sling surgery: comparative biomechanical analysis. Urology, 58(3), 482–486.

    Article  Google Scholar 

  18. Chuback, J. A., Singh, R. S., Sills, C., & Dick, L. S. (2000). Small bowel obstruction resulting from mesh plug migration after open inguinal hernia repair. Surgery, 127(4), 475–476.

    Article  Google Scholar 

  19. Ciritsis, A., Horbach, A., Staat, M., Kuhl, C. K., & Kraemer, N. A. (2018). Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo. Journal of Biomedical Materials Research Part B: Applied Biomaterials 106(2), 827–833.

    Google Scholar 

  20. Cobb, W. S., Burns, J. M., Peindl, R. D., Carbonell, A. M., Matthews, B. D., Kercher, K. W., et al. (2006). Textile analysis of heavy-weight, mid-weight and light-weight polypropylene mesh in a porcine ventral hernia model. Journal of Surgical Research, 136(1), 1–7.

    Article  Google Scholar 

  21. Cobb, W. S., Kercher, K. W., & Heniford, B. T. (2005). The argument for lightweight polypropylene mesh in hernia repair. Surgical Innovation, 12(1), 63–69.

    Article  Google Scholar 

  22. Conze, J., Junge, K., Weiss, C., Anurov, M., Oettinger, A., Klinge, U., et al. (2008). New polymer for intra-abdominal meshes-PVDF copolymer. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87(2), 321–328.

    Article  Google Scholar 

  23. Deligiannidis, N., Papavasiliou, I., Sapalidis, K., Kesisoglou, I., Papavramidis, S., & Gamvros, O. (2002). The use of three different mesh materials in the treatment of abdominal wall defects. Hernia, 6(2), 51–55.

    Article  Google Scholar 

  24. Dietz, H. P., Vancaillie, P., Svehla, M., Walsh, W., Steensma, A. B., & Vancaillie, T. G. (2003). Mechanical properties of urogynecologic implant materials. International Urogynecology Journal and Pelvic Floor Dysfunction, 14(4), 239–243.

    Article  Google Scholar 

  25. Dương, M. T., Seifarth, V., Artmann, A.. T., Artmann, G. M., & Staat, M. (2018). Growth modelling promoting mechanical stimulation of smooth muscle cells of porcine tubular organs in a fibrin-PVDF scaffold. In G.M. Artmann, I.E. Digel, A. Zhubanova, A. Temiz Artmann (eds.), Biological, Physical and Technical Basics of Cell Engineering (pp. 211–234). Singapore: Springer Nature. 10.1007/978-981-10-7904-7_9.

  26. Fenner, D. E. (2000). New surgical mesh. Clinical Obstetrics and Gynecology, 43(3), 650–658.

    Article  Google Scholar 

  27. Feola, A., Barone, W., Moalli, P., & Abramowitch, S. (2013). Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products. International Urogynecology Journal, 24(4), 559–564.

    Article  Google Scholar 

  28. Fischer, T., Ladurner, R., Gangkofer, A., Mussack, T., Reiser, M., & Lienemann, A. (2007). Functional cine MRI of the abdomen for the assessment of implanted synthetic mesh in patients after incisional hernia repair: initial results. European Radiology, 17(12), 3123–3129.

    Article  Google Scholar 

  29. Fleischmajer, R., Perlish, J. S., Burgeson, R. E., Shaikh-Bahai, F., & Timpl, R. (1990). Type I and type III collagen interactions during fibrillogenesis. Annals of the New York Academy of Sciences, 580, 161–175.

    Article  Google Scholar 

  30. Friedman, D. W., Boyd, C. D., Mackenzie, J. W., Norton, P., Olson, R. M., & Deak, S. B. (1993). Regulation of collagen gene expression in keloids and hypertrophic scars. Journal of Surgical Research, 55(2), 214–222.

    Article  Google Scholar 

  31. Frotscher, R., & Staat, M. (2014). Stresses produced by different textile mesh implants in a tissue equivalent. BioNanoMaterials, 15(1–2), 25–30.

    Google Scholar 

  32. Göretzlehner, U., & Müllen, A. (2007). PVDF als Implantat-Werkstoff in der Urogynäkologie. Biomaterialien, 8(S1), 28–29.

    Google Scholar 

  33. de la Gutiérrez, P. C., Vargas Romero, J., & Diéguez García, J. A. (2001). The value of CT diagnosis of hernia recurrence after prosthetic repair of ventral incisional hernias. European Radiology, 11(7), 1161–1164.

    Article  Google Scholar 

  34. Halbauer, C. (2014). Charakterisierung und Vergleich des mechanischen Verhaltens von in Gelatine gebetteten Netzimplantaten durch einen Aero-Bulgetest gegenüber einer FEM Simulation sowie die Entwicklung einer auf MRT-Scans basierenden 3D Visualisierungsmethode implantierter Netze. Unpublished bachelor thesis, Aachen University of Applied Sciences, Jülich.

    Google Scholar 

  35. Heniford, B. T., Park, A., Ramshaw, B. J., & Voeller, G. (2003). Laparoscopic repair of ventral hernias: Nine years’ experience with 850 consecutive hernias. Annals of Surgery, 238(3), 391–399.

    Google Scholar 

  36. Horbach, A. J., Duong, M. T., & Staat, M. (2017). Modelling of compressible and othotropic mesh implants based on optical deformation measurement. Journal of the Mechanical Behavior of Biomedical Materials, 74, 400–410.

    Article  Google Scholar 

  37. Hurme, T., Kalimo, H., Sandberg, M., Lehto, M., & Vuorio, E. (1991). Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Laboratory Investigation, 64(1), 76–84.

    Google Scholar 

  38. Jerabek, J., Novotny, T., Vesely, K., Cagas, J., Jedlicka, V., Vlcek, P., et al. (2014). Evaluation of three purely polypropylene meshes of different pore sizes in an onlay position in a New Zealand white rabbit model. Hernia, 18(6), 855–864.

    Article  Google Scholar 

  39. Junge, K., Binnebösel, M., Rosch, R., Jansen, M., Kämmer, D., Otto, J., et al. (2009). Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surgical Endoscopy, 23(2), 327–333.

    Article  Google Scholar 

  40. Junge, K., Binnebösel, M., von Trotha, K. T., Rosch, R., Klinge, U., Neumann, U. P., et al. (2012). Mesh biocompatibility: Effects of cellular inflammation and tissue remodelling. Langenbeck’s Archives of Surgery, 397(2), 255–270.

    Article  Google Scholar 

  41. Junge, K., Klinge, U., Rosch, R., Mertens, P. R., Kirch, J., Klosterhalfen, B., et al. (2004). Decreased collagen type I/III ratio in patients with recurring hernia after implantation with alloplastic prostheses. Langenbeck’s Archives of Surgery, 389(1), 17–22.

    Google Scholar 

  42. Klinge, U. (2007). Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World Journal of Surgery, 31(4), 867–868.

    Article  Google Scholar 

  43. Klinge, U., Binnebösel, M., Kuschel, S., & Schuessler, B. (2007). Demands and properties of alloplastic implants for the treatment of stress urinary incontinence. Expert Review of Medical Devices, 4(3), 349–359.

    Article  Google Scholar 

  44. Klinge, U., & Klosterhalfen, B. (2012). Modified classification of surgical meshes for hernia repair based on the analysis of 1,000 explanted meshes. Hernia, 16(3), 251–258.

    Article  Google Scholar 

  45. Klinge, U., Klosterhalfen, B., Müller, M., Ottinger, A. P., & Schumpelick V. (1998). Shrinking of polypropylene mesh in vivo: An experimental study in dogs. European Journal of Surgery, 164(12), 965–969.

    Article  Google Scholar 

  46. Klinge, U., Klosterhalfen, B., Birkenhauer, V., Junge, K., Conze, J., & Schumpelick, V. (2002). Impact of polymer pore size on the interface scar formation in a rat model. Journal of Surgical Research, 103(2), 208–214.

    Article  Google Scholar 

  47. Klinge, U., Park, J. K., & Klosterhalfen, B. (2013). The ideal mesh? Pathobiology, 80, 169–175.

    Article  Google Scholar 

  48. Klinge, U., Si, Z. Y., Zheng, H., Schumpelick, V., Bhardwaj, R. S., & Klosterhalfen, B. (2000). Abnormal collagen I to III distribution in the skin of patients with incisional hernia. European surgical Research, 32(1), 43–48.

    Article  Google Scholar 

  49. Klink, C. D., Junge, K., Binnebösel, M., et al. (2011). Comparison of long-term biocompatibility of PVDF and PP meshes. Journal of Investigative Surgery, 24(6), 292–299.

    Article  Google Scholar 

  50. Klosterhalfen, B., Junge, K., & Klinge, U. (2005). The lightweight and large porous mesh concept for hernia repair. Expert Review of Medical Devices, 2(1), 103–117.

    Article  Google Scholar 

  51. Klosterhalfen, B., Klinge, U., & Schumpelick, V. (1998). Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials, 19(24), 2235–2246.

    Article  Google Scholar 

  52. Langer, C., Neufang, T., Kley, C., Liersch, T., & Becker, H. (2001). Central mesh recurrence after incisional hernia repair with Marlex are the meshes strong enough? Hernia, 5(3), 164–167.

    Article  Google Scholar 

  53. Laroche, G., Marois, Y., Schwarz, E., Guidoin, R., King, M. W., Pâris, E., et al. (1995). Polyvinylidene fluoride monofilament sutures: Can they be used safely for long-term anastomoses in the thoracic aorta? Artificial Organs, 19(11), 1190–1199.

    Article  Google Scholar 

  54. Law, N. W., & Ellis, H. (1988). Adhesion formation and peritoneal healing on prosthetic materials. Clinical Materials, 3(2), 95–101.

    Article  Google Scholar 

  55. Leber, G. E., Garb, J. L., Alexander, A. I., & Reed, W. P. (1998). Long-term complications associated with prosthetic repair of incisional hernias. Archives of Surgery, 133(4), 378–382.

    Article  Google Scholar 

  56. LeBlanc, K. A. (2001). The critical technical aspects of laparoscopic repair of ventral and incisional hernias. American Surgeon, 67(8), 809–812.

    Google Scholar 

  57. Lehr, S. C., & Schuricht, A. L. (2001). A minimally invasive approach for treating postoperative seromas after incisional hernia repair. JSLS-Journal of the Society of Laparoendoscopic Surgeons, 5(3), 267–271.

    Google Scholar 

  58. Liang, R., Abramowitch, S., Knight, K., Palcsey, S., Nolfi, A., Feola, A., et al. (2013). Vaginal degeneration following implantation of synthetic mesh with increased stiffness. British Journal of Obstetrics and Gynaecology, 120(2), 233–243.

    Article  Google Scholar 

  59. Margulies, R. U., Lewicky-Gaupp, C., Fenner, D. E., McGuire, E. J., Clemens, J. Q., & Delancey, J. O. (2008). Complications requiring reoperation following vaginal mesh kit procedures for prolapse. American Journal of Obstetrics & Gynecology, 199(6), 678.e1–678.e4.

    Article  Google Scholar 

  60. Matthews, B. D., Pratt, B. L., Pollinger, H. S., Backus, C. L., Kercher, K. W., Sing, R. F., et al. (2003). Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh. Journal of Surgical Research, 114(2), 126–132.

    Article  Google Scholar 

  61. Mohamed, M., Elmoghrabi, A., Shepard W. R., & McCann, M. (2016) Delayed onset seroma formation ‘opting out’ at 5 years after ventral incisional hernia repair. BMJ Case Reports 2016. https://doi.org/10.1136/bcr-2016-215034

  62. Morris-Stiff, G. J., & Hughes, L. E. (1998). The outcomes of nonabsorbable mesh placed within the abdominal cavity: literature review and clinical experience. Journal of the American College of Surgeons, 186(3), 352–367.

    Article  Google Scholar 

  63. Mühl, T., Binnebösel, M., Klinge, U., & Goedderz, T. (2008). New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 84(1), 176–183.

    Article  Google Scholar 

  64. Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.

    Article  Google Scholar 

  65. Orenstein, S. B., Saberski, E. R., Kreutzer, D. L., & Novitsky, Y. W. (2012). Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. Journal of Surgical Research, 176(2), 423–429.

    Article  Google Scholar 

  66. Otto, J., Kaldenhoff, E., Kirschner-Hermanns, R., Mühl, T., & Klinge, U. (2014). Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. Journal of Biomedical Materials Research Part A, 102(4), 1079–1084.

    Article  Google Scholar 

  67. Pans, A., Albert, A., Lapière, C. M., & Nusgens, B. (2001). Biochemical study of collagen in adult groin hernias. Journal of Surgical Research, 95(2), 107–113.

    Article  Google Scholar 

  68. Patel, H., Ostergard, D. R., & Sternschuss, G. (2012). Polypropylene mesh and the host response. International Urogynecology Journal, 23(6), 669–679.

    Article  Google Scholar 

  69. Poobalan, A. S., Bruce, J., Smith, W. C., King, P. M., Krukowski, Z. H., & Chambers, W. A. (2003). A review of chronic pain after inguinal herniorrhaphy. Clinical Journal of Pain, 19(1), 48–54.

    Article  Google Scholar 

  70. Post, S., Weiss, B., Willer, M., Neufang, T., & Lorenz, D. (2004). Randomized clinical trial of lightweight composite mesh for Lichtenstein inguinal hernia repair. British Journal of Surgery, 91(1), 44–48.

    Article  Google Scholar 

  71. Ratner, B. D., Northup, S. J., & Anderson, J. M. (2004). Biological testing of biomaterials. In B. D. Ratner, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials science: an introduction to materials in medicine (2nd ed., pp. 355–360). San Diego: Elsevier.

    Google Scholar 

  72. Rutkow, I. M. (2003). Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surgical Clinics of North America, 83(5), 1045–1051, V–VI.

    Article  Google Scholar 

  73. Saad, B., Abu-Hijleh, G., & Suter, U. W. (2003). Polymer biocompatibility assessment by cell culture techniques. In R. Arshady (Ed.), Introduction to polymeric biomaterials: the polymeric biomaterials series (pp. 263–299). London: Citus Books.

    Google Scholar 

  74. Salamone, G., Licari, L., Agrusa, A., Romano, G., Cocorullo, G., & Gulotta, G. (2015). Deep seroma after incisional hernia repair. Case reports and review of the literature. Annali Italiani di Chirurgia, 12:86 (ePub).

    Google Scholar 

  75. Scheidbach, H., Tamme, C., Tannapfel, A., Lippert, H., & Köckerling, F. (2004). In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surgical Endoscopy, 18(2), 211–220.

    Article  Google Scholar 

  76. Schumpelick, V., Conze, J., & Klinge, U. (1996). Preperitoneal meshplasty in incisional hernia repair. A comparative retrospective study of 272 repaired incisional hernias. Chirurg, 67(10), 1028–1035.

    Article  Google Scholar 

  77. Scott, P. D., Harold, K. L., Craft, R. O., & Roberts, C. C. (2008). Postoperative seroma deep to mesh after laparoscopic ventral hernia repair: computed tomography appearance and implications for treatment. Radiology Case Reports, 3(1), art. 10.128.

    Article  Google Scholar 

  78. Shoshan, S. (1981). Wound healing. International Review of Connective Tissue Research, 9, 1–26.

    Google Scholar 

  79. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958.

    Article  Google Scholar 

  80. Staat, M., Trenz, E., Lohmann, P., Frotscher, R., Klinge, U., Tabaza, R., et al. (2012). New measurements to compare soft tissue anchoring systems in pelvic floor surgery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100(4), 924–933.

    Article  Google Scholar 

  81. Susmallian, S., Gewurtz, G., Ezri, T., & Charuzi, I. (2001). Seroma after laparoscopic repair of hernia with PTFE patch: is it really a complication? Hernia, 5(3), 139–141.

    Article  Google Scholar 

  82. Usher, F. C., & Gannon, J. P. (1959). Marlex mesh, a new plastic mesh for replacing tissue defects. I. Experimental studies. AMA Archives of Surgery, 78(1), 131–137.

    Article  Google Scholar 

  83. Usher, F. C., Ochsner, J., & Jr, Tuttle L. L. (1958). Use of Marlex mesh in the repair of incisional hernias. American Surgeon, 24(12), 969–974.

    Google Scholar 

  84. van’t Riet, M., de Vos van Steenwijk, P. J., Bonthuis, F., Marquet, R. L., Steyerberg, E. W., Jeekel, J., et al. (2003). Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Annals of Surgery, 237(1), 123–128.

    Article  Google Scholar 

  85. Welty, G., Klinge, U., Klosterhalfen, B., Kasperk, R., & Schumpelick, V. (2001). Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia, 5(3), 142–147.

    Article  Google Scholar 

  86. Williams, G. T., & Williams, W. J. (1983). Granulomatous inflammation-a review. Journal of Clinical Pathology, 36(7), 723–733.

    Article  Google Scholar 

  87. Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engineering, 11(1–2), 1–18.

    Article  Google Scholar 

Download references

Acknowledgements

The first author has been partially funded by the German Federal Ministry of Education and Research through the FHprofUnt project BINGO (03FH073PX2). We would also like to thank our project partner FEG Textiltechnik mbH, Aachen, Germany for providing the prostheses, Nils Andreas Krämer, PD MD, Uniklinikum RWTH Aachen, Germany for providing MRI data, and Andreas Horbach, DI, and our students Christian Halbauer, Viola Gruben for their help with experiments and providing the results from their bachelor theses. The authors would also like to acknowledge Prof. Dr. Melinda Harman, Clemson University for providing permission to use the images reprinted in Fig. 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aroj Bhattarai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattarai, A., Staat, M. (2018). Mechanics of Soft Tissue Reactions to Textile Mesh Implants. In: Artmann, G., Artmann, A., Zhubanova, A., Digel, I. (eds) Biological, Physical and Technical Basics of Cell Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7904-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7904-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7903-0

  • Online ISBN: 978-981-10-7904-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics