Skip to main content
Book cover

Agroforestry pp 263–297Cite as

Alley Cropping with Short Rotation Coppices in the Temperate Region: A Land-use Strategy for Optimizing Microclimate, Soil Organic Carbon and Ecosystem Service Provision of Agricultural Landscapes

  • Chapter
  • First Online:

Abstract

Conventional agricultural practices have been associated with negative effects, such as reduction of soil fertility, pollution of surface and groundwater and loss of biodiversity and ecosystem services (ES). To mitigate these effects, while sustaining high levels of crop production, innovative land-use practices are necessary. A promising land-use approach are alley cropping systems (ACS) with short rotation coppices, which are agroforestry systems, that combine the cultivation of conventional agricultural crops with fast-growing trees to produce biomass for energy purposes at the same time on the same piece of land. In the presented study, the effects of trees planted in ACS on agricultural land in Central Europe on microclimate, on soil organic matter (SOM) and on the provision of ecosystem services (ES) were elaborated, based on a review of relevant literature and results of recent research projects. The outcomes suggest that, due to their structural complexity, ACS can be more efficient regarding main microclimatic factors than either crop or tree monocultural systems. As a main factor, wind protection by the hedgerows in ACS was identified. Other microclimatic factors, such as light, temperature or evaporation, were also clearly influenced by the presence of trees; however, occurring interactions were often complex, and cause-effect relations were difficult to ascertain. A further outcome is that planting trees on agricultural sites potentially increases soil organic carbon (SOC) stocks, which can be considered as a main indicator for soil humus and soil fertility. However, it became evident that, in addition to the depth dimension (30 cm sampling depth can be considered as insufficient), the dimension of time needs to be taken more strongly into account. The authors suggest a division of the lifetime of agricultural trees in an initial (SOC stocks may decrease), a transitional (stocks approach steady state; SOC distribution pattern in the soil may change) and a steady-state phase (no major changes in stocks or distribution patterns) when interpreting effects of trees on SOC. Subsequently, in the attempt to value the effects of ACS on crop productivity and soil, suitable and transferable methods for the assessment of ES were discussed. It was demonstrated that the provision of ES from ACS was higher than from conventional agriculture and that ACS can increase productivity while sustaining high levels of SOC. Summarizing, the results suggested that ACS – if designed and managed appropriately – may function as a practical and diverse tool to mitigate negative effects of agricultural production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York state. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  • Alam M, Olivier A, Paquette A, Dupras J, Revéret J-P, Messier C (2014) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor Syst 88(4):679–691

    Article  Google Scholar 

  • Ali W (2009) Modelling of biomass production potential of poplar in short rotation plantations on agricultural lands of Saxony, Germany. PhD Thesis. Technical University Dresden, Dresden, Germany, p 130

    Google Scholar 

  • Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–370

    Article  PubMed  Google Scholar 

  • Bagstad KJ, Semmens DJ, Waage S, Winthrop R (2013) A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 5:27–39

    Article  Google Scholar 

  • Baldock JA, Nelson PN (1999) Soil organic matter. In: Summer M (ed) Handbook of soil science. CRC Press, Boca Raton/London/New York, pp 25–84

    Google Scholar 

  • Baldwin CS (1988) The influence of field windbreaks on vegetable and specialty crops. Agric Ecosyst Environ 22:191–203

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79(3):343–353

    Article  Google Scholar 

  • Bemmann A, Feger K-H, Gerold D, Große W, Hartmann K-U, Petzold R, Röhle H, Schweinle J, Steinke C (2007) Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in der Region Großenhain im Freistaat Sachsen. Forstarchiv 78:95–101

    Google Scholar 

  • Blenk H (1953) Strömungstechnische Beiträge zum Windschutzproblem. Landtechnische Forschung 3(3):87–95

    Google Scholar 

  • Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2016) Scheffer/Schachtschabel: Soil Science. Springer, Berlin, p 618

    Book  Google Scholar 

  • Böhm C, Quinkenstein A, Freese D (2012) Vergleichende Betrachtung des Agrarholz- und Energiemaisanbaus aus Sicht des Bodenschutzes. Bodenschutz 2:36–43

    Google Scholar 

  • Böhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor Syst 88:579–591

    Article  Google Scholar 

  • Böhmel C (2007) Comparative performance of annual and perennial energy cropping systems under different management regimes. PhD thesis. University of Hohenheim, Hohenheim, Germany, p 139

    Google Scholar 

  • Bolte A, Wellbrock N, Dunger K (2011) Welche Maßnahmen sind umsetzbar? AFZ-Der Wald 2:27–29

    Google Scholar 

  • Brandle J, Hodges L, Zhou X (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61–62(1):65–78

    Google Scholar 

  • Brenner AJ (1991) Tree-crop interactions within a Sahelian windbreak system. PhD thesis. University of Edinburgh, Edinburgh, UK, p 284

    Google Scholar 

  • Brock C, Franko U, Oberholzer H-R, Kuka K, Leithold G, Kolbe H, Reinhold J (2013) Humus balancing in Central Europe – concepts, state of the art, and further challenges. J Plant Nutr Soil Sci 176(1):3–11

    Article  CAS  Google Scholar 

  • Buck LE, Lassoie JP, Fernandes EC (1999) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton/London/New York, p 432

    Google Scholar 

  • Buckwell A, Uhre AN, Williams A, Polakova J, Blum WEH, Schiefer J, Lair GJ, Heissenhuber A, Schieβl P, Kramer C, Haber W (2014) The sustainable intensification of European agriculture. The RISE Foundation, Brussels, p 98

    Google Scholar 

  • Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123(2):105–115

    CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31(2):132–140

    Article  PubMed  Google Scholar 

  • Cleugh HA (1998) Effects of windbreaks on airflow, microclimates and crop yields. Agrofor Syst 41:55–84

    Article  Google Scholar 

  • Coleman MD, Isebrands JG, Tolsted DN, Tolbert VR (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in north Central United States. Environ Manag 33(1):299–308

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Daily GC (ed) (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, p 412

    Google Scholar 

  • Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Agric For Res 59(3):197–206

    Google Scholar 

  • Dominati EJ, Mackay AD, Green JBS (2016) An ecosystems approach to quantify soil performance for multiple outcomes: the future of land evaluation? Soil Sci Soc Am J 80:438–449

    Article  CAS  Google Scholar 

  • Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll LD, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma J, Papanastasis V, Paris P, Pilbeam DJ, Reisner Y, van Noordwijk M, Vincent G, van der Werf W (2005) SAFE final report – synthesis of the silvoarable agroforestry for Europe project. European Union, INRA-UMR System editions, p 254

    Google Scholar 

  • Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem services assessments around European agroforestry. Ecol Indic 62:47–65

    Article  Google Scholar 

  • Feldhake CM (2001) Microclimate of a natural pasture under planted Robinia pseudoacacia in central Appalachia, West Virginia. Agrofor Syst 53:297–303

    Article  Google Scholar 

  • Feldwisch N, Frede H, Hecker F (1998) Verfahren zum Abschätzen der Erosions und Auswaschungsgefahr. In: und S. Dabbert H-GF (eds) Handbuch zum Gewässerschutz in der Landwirtschaft. Ecomed, Landsberg, pp 22–57

    Google Scholar 

  • Garten CTJ (2002) Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass Bioenergy 23:93–102

    Article  CAS  Google Scholar 

  • Graves A, Burgess P, Palma J, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, de Nooy AK, van den Briel J (2007) Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol Eng 29(4):434–449

    Article  Google Scholar 

  • Greef JM, Schwarz K-U, Hoffmann J, Langhof M, Lamerre J, Grünewald H, Pfennig K, von Wühlisch G, Schmidt C (2012) Ökonomische und ökologische Bewertung von Agroforstsystemen in der landwirtschaftlichen Praxis (Verbundvorhaben AgroForstEnergie, Abschlussbericht Teilvorhaben 3: Grünland- und Ackerflächen in Niedersachsen). Brandenburgische Technische Universität Cottbus, p 87

    Google Scholar 

  • Grimm M, Jones R, Montanarella L (2002) Soil erosion risk in Europe. European Soil Bureau – Institute for Environment and Sustainability, JRC, Ispra, p 40

    Google Scholar 

  • Grünewald H, Brandt BKV, Schneider BU, Bens O, Kendzia G, Hüttl RF (2007) Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol Eng 29(4):319–328

    Article  Google Scholar 

  • Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009) Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Res 2(3):123–133

    Article  Google Scholar 

  • Haines-Young R, Potschin M (2013) Consultation on Version 4, August–December 2012 – Report to the European Environment Agency (Revised January 2013). Common International Classification of Ecosystem Services (CICES), EEA Framework Contract No. EEA/IEA/09/003, p 32

    Google Scholar 

  • Hall DO, Mynick HE, Williams RH (1991) Cooling the greenhouse with bioenergy. Nature 353:11–12

    Article  Google Scholar 

  • Hellebrand HJ, Strähle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87(2):175–186

    Article  Google Scholar 

  • Heyn N, Jörgensen RG, Amthauer-Gallardo D, Wachendorf C (2011) Streufall und Streuumsatz in Böden von Kurzumtriebsplantagen. In: DBG (eds) Tagungsband der Jahrestagung der Deutschen Bodenkundlichen Gesellschaft (DBG) 2011: Böden verstehen – Böden nutzen – Böden fit machen, abgehalten vom 03. bis zum 09. September 2011, Berlin, Deutsche Bodenkundliche Gesellschaft (DBG), pp 1–4

    Google Scholar 

  • Hou Q, Brandle J, Hubbard K, Schoeneberger M, Nieto C, Francis C (2003) Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska, USA. Agrofor Syst 57(2):137–147

    Article  Google Scholar 

  • Hüttl RF, Dominik P (2008) Anbau nachwachsender Rohstoffe: Auswirkungen auf die Humusentwicklung an den Produktionsstandorten. In: Hüttl RF, Gerwin W, Bens O (eds) Zum Stand der Humusversorgung der Böden in Deutschland. Brandenburgische Technische Universität, pp 207–213

    Google Scholar 

  • Jenkinson DS (1971) The accumulation of organic matter in soil left uncultivated – Rothamsted Experimental Station report for 1970. Rothamsted Experimental Station, pp 113–137

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Biehle DJ (2000a) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 2. Competition for water. Agrofor Syst 48(1):41–59

    Article  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000b) Defining competition vectors in a temperate alley cropping system in the midwestern USA: 3. Competition for nitrogen and litter decomposition dynamics. Agrofor Syst 48(1):61–77

    Article  Google Scholar 

  • Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manag 121(1–2):85–99

    Article  Google Scholar 

  • Kanzler M, Böhm C (2015) Nachhaltige Erzeugung von Energieholz in Agroforstsystemen (AgroForstEnergie II) – Abschlussbericht Teilvorhaben 2: Bodenschutz und Bodenfruchtbarkeit, Wasserhaushalt und Mikroklima. Brandenburgische Technische Universität Cottbus–Senftenberg, p 161

    Google Scholar 

  • Kolbe H (2010) Site-adjusted organic matter–balance method for use in arable farming systems. J Plant Nutr Soil Sci 173(5):678–691

    Article  CAS  Google Scholar 

  • Körschens M, Rogasik J, Schulz E, Böning H, Eich D, Ellerbrock R, Franko U, Hülsbergen K-J, Köppen D, Kolbe H, Leithold G, Merbach I, Peschke H, Prystav W, Reinhold J, Zimmer J (2004) VDLUFA Standpunkt: Humusbilanzierung – Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Verband Untersuchungs- Deutscher und Forschungsanstalten Landwirtschaftlicher (VDLUFA), p 12

    Google Scholar 

  • Kort J (1988) Benefits of windbreaks to field and forage crops. Agric Ecosyst Environ 22–23:165–190

    Article  Google Scholar 

  • Kowalchuk TE, de Jong E (1995) Shelterbelts and their effect on crop yield. Can J Soil Sci 75(4):543–550

    Article  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4)

    Google Scholar 

  • Kumar BM, Nair PKR (eds) (2011) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, p 530

    Google Scholar 

  • Kuntze H, Roeschmann G, Schwerdtfeger G (1994) Bodenkunde – 5. neubearbeitete und erweiterte Auflage. Eugen Ulmer, Stuttgart, p 424

    Google Scholar 

  • Lamersdorf N, Schulte-Bisping H (2010) Impact of short rotation forestry on soil ecological services. In: Proceedings of the 19th World Congress of soil science: soil solutions for a changing world held 1–6 August 2010 in Brisbane (Australia), pp 48–51

    Google Scholar 

  • Lindroth A, Båth A (1999) Assessment of regional willow coppice yield in Sweden on basis of water availability. For Ecol Manag 121(1–2):57–65

    Article  Google Scholar 

  • Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Tillage Res 70(1):1–18

    Article  Google Scholar 

  • Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou EG, Notte AL, Zulian G, Bouraoui F, Paracchini ML, Braat L, Bidoglio G (2012a) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1(1):31–39

    Article  Google Scholar 

  • Maes J, Paracchini ML, Zulian G, Dunbar MB, Alkemade R (2012b) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12

    Article  Google Scholar 

  • Marzelli S, Grêt-Regamey A, Moning C, Rabe S-E, Koellner T, Daube S (2014) Die Erfassung von Ökosystemleistungen – Erste Schritte für eine Nutzung des Konzepts auf nationaler Ebene für Deutschland. Nat Landsch 89:66–73

    Google Scholar 

  • McNaughton K (1988) 1. Effects of windbreaks on turbulent transport and microclimate. Agric Ecosyst Environ 22:17–39

    Article  Google Scholar 

  • Mead R, Willey RW (1980) The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric 16(3):217–228

    Article  Google Scholar 

  • Medinski TV, Freese D, Böhm C, Slazak A (2014) Soil carbon fractions in short rotation poplar and black locust coppices, Germany. Agrofor Syst 88(3):505–515

    Article  Google Scholar 

  • Mirck J, Böhm C, Kanzler M, Freese D (2015) Blattstreumengen in Gehölzstreifen und angrenzenden Ackerbereichen innerhalb eines Agroforstsystems. In: Kage H, Sieling K, Francke-Weltmann L (eds) Multifunktionale Agrarlandschaften: Pflanzenbaulicher Anspruch, Biodiversität, Ökosystemdienstleistungen, Tagungsband der 58. Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V., 22.–24. September 2015 in Braunschweig, pp 83–84

    Google Scholar 

  • Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry – operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121(1–2):123–136

    Article  Google Scholar 

  • Monteith JL, Ong CK, Corlett JE (1991) Microclimatic interactions in agroforestry systems. For Ecol Manag 45(1–4):31–44

    Article  Google Scholar 

  • Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3(2):97–128

    Article  Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht, p 499

    Book  Google Scholar 

  • Nair PKR (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, pp 3–16

    Chapter  Google Scholar 

  • Nair PKR, Kumar BM, Nair DV (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172(1):10–23

    Article  CAS  Google Scholar 

  • Nii-Annang S, Grünewald H, Freese D, Hüttl R, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45(5):531–538

    Article  CAS  Google Scholar 

  • Nordstrom KF, Hotta S (2004) Wind erosion from cropland in the USA: a review of problems, solutions and prospects. Geoderma 121(3–4):157–167

    Article  Google Scholar 

  • Norton RL (1988) Windbreaks: benefits to orchard and vineyard crops. Agric Ecosyst Environ 22:205–213

    Article  Google Scholar 

  • Nuberg I (1998) Effect of shelter on temperate crops: a review to define research for Australian conditions. Agrofor Syst 41:3–34

    Article  Google Scholar 

  • OECD (2008) Environmental performance of agriculture in OECD countries since 1990. Organisation for Economic Co-operation and Development (OECD), p 208

    Google Scholar 

  • Osborne LL, Kovacic DA (1993) Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29(2):243–258

    Article  Google Scholar 

  • Palma JHN, Graves AR, Crous-Duran J, Upson M, Paulo JA, Oliveira TS, de Jalón SSG, Burgess PJ (2016) Yield-SAFE model improvements. Milestone report 29 (6.4) for EU FP7 research project: AGFORWARD 613520. AGFORWARD, p 30

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Petzold R, Schubert B, Feger K-H (2010) Biomasseproduktion, Nährstoffallokation und bodenökologische Veränderungen einer Pappel-Kurzumtriebsplantage in Sachsen (Deutschland). Die Bodenkultur 61(3):23–35

    CAS  Google Scholar 

  • Porter J, Costanza R, Sandhu H, Sigsgaard L, Wratten S (2009) The value of producing food, energy and ecosystem services within an agro-ecosystem. Ambio 38(4):186–193

    Article  PubMed  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond B 365:2959–2971

    Article  Google Scholar 

  • Pugesgaard S, Schelde K, Larsen SU, Lærke PE, Jørgensen U (2015) Comparing annual and perennial crops for bioenergy production – influence on nitrate leaching and energy balance. GCB Bioenerg 7(5):1136–1149

    Article  CAS  Google Scholar 

  • Quinkenstein A, Jochheim H (2015) Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany – model development and application. J Environ Manag 168:53–66

    Article  CAS  Google Scholar 

  • Quinkenstein A, Kanzler M (2018) Wirkungen von Agrargehölzen auf den Bodenstoffhaushalt. In: Böhm C, Veste M (eds) Agrarholz – Schnellwachsende Bäume für die Energieholzgewinnung. Springer. (in press)

    Google Scholar 

  • Quinkenstein A, Schultze B, Grünewald H, Wöllecke J, Schneider BU, Jochheim H, Hüttl RF (2009a) Landschaftsökologische Aspekte der Dendromasseproduktion – Analyse und Bewertung von Risiken und Vorteilswirkungen. In: Murach D, Knur L, Schultze M (eds) DENDROM - Zukunftsrohstoff Dendromasse: Systemische Analyse, Leitbilder und Szenarien für die nachhaltige energetische und stoffliche Verwertung von Dendromasse aus Wald- und Agrarholz. Verlag Kessel, pp 317–344

    Google Scholar 

  • Quinkenstein A, Wöllecke J, Böhm C, Grünewald H, Freese D, Schneider BU, Hüttl RF (2009b) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Pol 12:1112–1121

    Article  Google Scholar 

  • Quinkenstein A, Böhm C, Matos E, Freese D, Hüttl RF (2011) Assessing the carbon sequestration in short rotation coppice systems of Robinia pseudoacacia L. on marginal sites in NE-Germany. In: Kumar BM, Nair PKR (eds) Carbon sequestration potential of agroforestry systems – opportunities and challenges. Springer, New York, pp 201–216

    Chapter  Google Scholar 

  • Quinkenstein A, Pape D, Freese D, Schneider BU, Hüttl RF (2012) Biomass, carbon and nitrogen distribution in living woody plant parts of Robinia pseudoacacia L. growing on reclamation sites in the mining region of lower Lusatia (Northeast Germany). Int J For Res 2012:1–10

    Google Scholar 

  • Quinkenstein A, Janus T, Freese D (2017) Depth gradient of soil C, N and S contents in an alley cropping system for biomass production. In: Böhm C (ed) Bäume in der Land(wirt)schaft, von der Theorie in die Praxis – Tagunsgband des 5. Forums Agroforstsysteme, abgehalten vom 30.11.2016 bis zum 01.12.2016 in Senftenberg (Deutschland)

    Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci USA 107(11):5242–5247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehbein K, Sandhage-Hofmann A, Amelung W (2013) Langfristiger Kohlenstoffumsatz und C-Sequestrierung. In: Wagener F, Böhmer J, Kuhn D, Sutterer N (eds) Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE): Phase III – Umsetzung praxisbasierter Feldmodellprojekte (Endbericht), Hochschule Trier – Umwelt-Campus Birkenfeld, Institut für angewandtes Stoffstrommanagement (IfaS), pp 149–162

    Google Scholar 

  • Reid WV, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P, Dietz T, Duraiappah AK, Hassan R, Kasperson R, Leemans R, May RM, McMichael TA, Pingali P, Samper C, Scholes R, Watson RT, Zakri A, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB (2005) Millennium ecosystem assessment: ecosystems and human well-being – synthesis. Island Press, Washington DC, p 155

    Google Scholar 

  • Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam J, Mosquera-Losada M (2009a) Agroforestry systems in Europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Springer, Dordrecht, pp 43–65

    Chapter  Google Scholar 

  • Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) (2009b) Agroforestry in Europe – current status and future prospects. Springer, Dordrecht, p 450

    Google Scholar 

  • Ringler A, Roßmann D, Steidl I (1997) Landschaftspflegekonzept Bayern – Lebensraum Hecken und Feldgehölze. Bayrisches Staatsministerium für Landesentwicklung und Umweltfragen, Bayerische Akademie für Naturschutz und Landschaftspflege, München, Deutschland, p 523

    Google Scholar 

  • Robert M (2001) Soil carbon sequestration for improved land management. FAO, Rome

    Google Scholar 

  • Rodríguez JP, Beard TD Jr, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11(1):1–28

    Article  Google Scholar 

  • Röhle H, Hartmann KU, Steinke C (2010) Ertragskunde. In: Skodawessely C, Pretzsch J, Bemmann A (eds) Eigenverlag Technische Universität Dresden, pp 53–59

    Google Scholar 

  • Roy RN, Misra RV, Lesschen JP, Smaling EM (2003) Assessment of soil nutrient balance-approaches and methodologies FAO (Food Agricultural Organization of the United Nations), p 101

    Google Scholar 

  • Schimel D, Coleman D, Horton K (1985) Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota. Geoderma 36(3):201–214

    Article  Google Scholar 

  • Schinner F, Sonnleitner R (1996) Bodenökologie: Mikrobiologie und Bodenenzymatik Band I Grundlagen, Klima, Vegetation und Bodentyp. Springer, Berlin/Heidelberg/Germany, p 450

    Book  Google Scholar 

  • Scholten H (1988) Snow distribution on crop fields. Agric Ecosyst Environ 22–23:363–380

    Article  Google Scholar 

  • Scholz V, Hellebrand HJ, Grundmann P (2004) Produktion von nachwachsenden Energierohstoffen auf landwirtschaftlichen Flächen. KTBL, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., pp 176–181

    Google Scholar 

  • Schroeder P (1993) Agroforestry systems: integrated land use to store and conserve carbon. Clim Res 3(1–2):53–60

    Article  Google Scholar 

  • Schroth G (1995) Tree root characteristics as criteria for species selection and systems design in agroforestry. Agrofor Syst 30(1–2):125–143

    Article  Google Scholar 

  • Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43(1–3):5–34

    Article  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3(2):147–166

    Article  CAS  Google Scholar 

  • Schulze J, Frank K, Priess JA, Meyer MA (2016) Assessing regional-scale impacts of short rotation coppices on ecosystem services by modeling land-use decisions. PLoS One 11(4):1–21

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK (1998) Effect of poplar (Populus deltoides) shelterbelt on the growth and yield of wheat in Punjab, India. Agrofor Syst 40(2):207–213

    Article  Google Scholar 

  • Ślązak A, Böhm C, Veste M (2013) Kohlenstoffspeicherung, Nährstoff- und Wasserverfügbarkeit. In: Wagener F, Böhmer J, Kuhn D, Sutterer N (eds) Entwicklung extensiver Landnutzungskonzepte für die Produktion nachwachsender Rohstoffe als mögliche Ausgleichs- und Ersatzmaßnahmen (ELKE): Phase III – Umsetzung praxisbasierter Feldmodellprojekte (Endbericht), Hochschule Trier – Umwelt-Campus Birkenfeld, Institut für angewandtes Stoffstrommanagement (IfaS), pp 130–149

    Google Scholar 

  • Smith J, Pearce BD, Wolfe MS (2012) Reconciling productivity with protection of the environment: is temperate agroforestry the answer? Renewable Agric Food Syst 28:80–92

    Article  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1):65–105

    Article  Google Scholar 

  • Steppler HA, Nair PR (eds) (1987) Agroforestry – a decade of development. International Council for Research in Agroforestry (ICRAF), Nairobi, p 336

    Google Scholar 

  • Stetter U, Makeschin F (1997) Kohlenstoff- und Stickstoffdynamik vormals landwirtschaftlich genutzter Böden nach Erstaufforstung mit schnellwachsenden Baumarten. Mitteilgn Dtsch Bodenkundl Gesellsch 85(2):1047–1050

    Google Scholar 

  • Stone E, Kalisz P (1991) On the maximum extent of tree roots. For Ecol Manag 46(1):59–102

    Article  Google Scholar 

  • Sudmeyer RA, Scott PR (2002) Characterisation of a windbreak system on the south coast of Western Australia. 1. Microclimate and wind erosion. Aust J Exp Agric 42(6):703–715

    Article  Google Scholar 

  • Szczukowski S, Tworkowski J, Klasa A, Stolarski M (2002) Productivity and chemical composition of wood tissues of short rotation willow coppice cultivated on arable land. Rostlinná Výroba 48(9):413–417

    Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Tsonkova P, Böhm C, Quinkenstein A, Freese D (2012) Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agrofor Syst 85:133–152

    Article  Google Scholar 

  • Tsonkova P, Quinkenstein A, Böhm C, Freese D, Schaller E (2014) Ecosystem services assessment tool for agroforestry (ESAT-A): an approach to assess selected ecosystem services provided by alley cropping systems. Ecol Indic 45:285–299

    Article  Google Scholar 

  • Tsonkova P, Böhm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to identify enhancement potentials for the provision of selected ecosystem services by different land use strategies. Agric Syst 135:112–121

    Article  Google Scholar 

  • Updegraff KL, Zak DR, Grigal DF (1990) The nitrogen budget of a hybrid poplar plantation in Minnesota. Can J For Res 20(11):1818–1822

    Article  CAS  Google Scholar 

  • van der Werf W, Keesman K, Burgess P, Graves A, Pilbeam D, Incoll L, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma J, Dupraz C (2007) Yield-SAFE: a parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems. Ecol Eng 29(4):419–433

    Article  Google Scholar 

  • Vooren LV, Reubens B, Broekx S, Pardon P, Reheul D, van Winsen F, Verheyen K, Wauters E, Lauwers L (2016) Greening and producing: an economic assessment framework for integrating trees in cropping systems. Agric Syst 148:44–57

    Article  Google Scholar 

  • Walle IV (2007) Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems. PhD Thesis. Ghent University, Ghent, Belgium, p 244

    Google Scholar 

  • Wessolek G, Duijnisveld WHM, Trinks S (2004) Ein neues Verfahren zur Berechnung der Sickerwasserrate aus dem Boden: das TUB-BGR-Verfahren. In: Bronstert A, Thieken A, Merz B, Rohde M, Menzel L (eds) Wasser- und Stofftransport in heterogenen Einzugsgebieten: Beiträge zum Tag der Hydrologie am 22./23. März 2004 in Potsdam (Germany), Hydrologische Wissenschaften – Fachgemeinschaft in der ATV-DVWKKleeberg, pp 135–145

    Google Scholar 

  • Wessolek G, Kaupenjohann M, Dominik P, Ilg K, Schmitt A, Zeitz J, Gahre F, Schulz E, Ellerbrock R, Utermann J, Düwel O, Siebner C (2008) Ermittlung von Optimalgehalten an organischer Substanz landwirtschaftlich genutzter Böden nach § 17(2) Nr. 7 BBodSchG. Umweltbundesamt, p 211

    Google Scholar 

  • Yocum WW (1937) Root development of young delicious apple trees as affected by soils and by cultural treatments. Univ Nebraska Agric Exp stat. Res Bull 95:1–55

    Google Scholar 

  • Young A (1990) Agroforestry for soil conservation. CAB International, Wallingford, p 317

    Google Scholar 

  • Zech W, Ziegler F, Kögel-Knabner I, Haumaier L (1992) Humic substances distribution and transformation in forest soils. Sci Total Environ 117:155–174

    Article  Google Scholar 

  • Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Quinkenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quinkenstein, A., Tsonkova, P., Freese, D. (2017). Alley Cropping with Short Rotation Coppices in the Temperate Region: A Land-use Strategy for Optimizing Microclimate, Soil Organic Carbon and Ecosystem Service Provision of Agricultural Landscapes. In: Dagar, J., Tewari, V. (eds) Agroforestry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7650-3_10

Download citation

Publish with us

Policies and ethics